0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

某纯电动汽车电机啸叫噪声表现

电子设计 来源:电子设计 作者:电子设计 2022-02-11 10:47 次阅读

本文基于某纯电动汽车电机啸叫噪声表现,通过整车测试评价及电机本体CAE仿真分析的手段提出结构改进方案,优化后电机啸叫噪声降低明显,对纯电动汽车电机啸叫噪声优化提供了一定的依据及相关经验。

1、电机8阶啸叫问题

1.1、整车电机8阶啸叫噪声

根据整车测试数据,加速工况车内电机8阶啸叫噪声凸显,测试结果如图1所示。对应主观评价结果为车速在60km/h~80km/h范围,车内存在明显电机啸叫噪声,主观评分6分。提取电机8阶噪声阶次声压级曲线,峰值噪声声压级在55dB(A)左右,对应问题转速段为3000rpm~5000rpm。

1.2、电机8阶激励源分析

此车型选用的驱动电机为转子磁极数为8极,定子槽数为48槽的永磁同步电机,电机8阶啸叫噪声来源主要为电机转子不平衡量激励导致的机械噪声。

电机台架测试结果如图2所示。从测试结果中看,台架近场1m噪声colormap中,电机8阶噪声凸显,特别是在电机高转速段,这表明电机壳体向外辐射8阶噪声明显;台架壳体振动colormap中,电机8阶振动全转速段均很凸显,存在电机8阶振动通过结构传递的方式导致车内8阶噪声大的可能性。

2、电机8阶噪声传递路径分析

电机8阶啸叫噪声传递路径主要为以电驱总成悬置隔振为主的结构传递和穿透车身前围隔吸声措施的空气传递两种路径,电机8阶啸叫噪声传递过程如图3所示:

o4YBAGAI8fiAGk1vAABCGPhVINM458.jpg

图3 电机8阶啸叫噪声传递路径图

2.1、电驱系统悬置隔振分析

通过整车测试,对电驱系统悬置隔振特性进行分析,包括左、右、后悬置对电驱系统8阶激励的隔振性能,如图4所示。在3000rpm~5000rpm问题转速段,电驱系统三个悬置对电机8阶振动激励隔振效果较好,隔振率均在20dB左右。

pIYBAGAI8jaAKLAkAABPIFFPGmU563.jpg

图4 电驱系统悬置隔振率

2.2、电机8阶噪声空气传播验证

空气传递一般是电驱高频噪声的主要传递路径,本文为验证空气传递路径对电机8阶啸叫噪声的影响,在整车状态下对驱动电机进行声学包裹,包裹物分为4层,第1层为吸音棉、第2层为胶皮、第3层为吸音棉、第4层为铅皮,4层包裹物叠加在一起,驱动电机声学包裹状态如图5:

图5 驱动电机声学包裹

驱动电机声学包裹前后进行整车测试及评价,测试结果为包裹后车内电机8阶噪声降低明显,峰值处噪声幅值降低9dB(A),主观评价电机8阶啸叫噪声不易感知,包裹前后对比如图6所示。驱动电机声学包裹措施验证结论为空气传递为车内电机8阶噪声的主要传递路径。

o4YBAGAI8reAZ4-pAABVUpJzuaY695.jpg

图6 电机包裹前后车内8阶噪声对比

3、电机结构改进方案及效果验证

电机声学包裹措施可有效降低车内电机8阶噪声,但受限于整车总布置空间,电机包裹方案无法实现。并且,该车型车身前围声学包及气密性状态均已达标,需从激励源控制,即电机结构改进方向对车内8阶噪声进行优化。

3.1、整车状态电机8阶噪声问题定位

通过整车测试分析,电机逆变器壳体8阶振动曲线在490Hz存在明显峰值,电机右悬置支架8阶振动曲线在580Hz存在明显峰值,电机近场、车内前排8阶噪声及逆变器壳体、右悬置支架8阶振动峰值对应关系如图7所示。其中,电机近场8阶噪声在490Hz和580Hz存在两处峰值,与电机逆变器壳体和右悬置支架振动峰值对应。

o4YBAGAI8vWAXJ9XAABqXKqiWM4175.jpg

图7 8阶噪声及逆变器壳体、右悬置支架8阶振动

3.2、电机逆变器壳体模态分析

通过CAE模态仿真分析,计算出电机逆变器上壳体存在488Hz模态频率,此模态频率与整车测试逆变器壳体490Hz共振峰值对应。逆变器上壳体模态计算结果如图8所示:

pIYBAGAI8zOAaOEgAAAfRsWxEwk362.jpg

图8 逆变器上壳体模态计算结果

3.3、电机悬置支架模态分析

通过CAE模态仿真分析,计算出电机右悬置支架模态频率为718Hz,电机右悬置支架模态频率明显高于整车测试580Hz峰值结果,判断电机右悬置支架580Hz峰值为强迫振动问题。电机右悬置支架模态计算结果如图9所示:

o4YBAGAI83WAOqxlAAAw4qqAhXk419.jpg

图9 电机右悬置支架模态计算结果

3.4、电机结构改进方案

针对逆变器上壳体490Hz共振及电机右悬置支架580Hz强迫振动问题,分别制定结构优化方案。

对于逆变器壳体490Hz共振问题,实施优化措施如下:壳体厚度由原来的3mm增加至4mm、壳体背面增加加强筋结构、逆变器壳体上表面粘贴阻尼片,具体措施如图10所示。优化后,逆变器上壳体模态频率由488Hz提升至613Hz。

pIYBAGAI87SAW_kRAABihK6Dito948.jpg

图10 逆变器壳体结构改进方案

对于右悬置支架580Hz强迫振动问题,实施优化措施如下:综合考虑布置空间和右悬置支架8阶振动情况,在右悬置支架上安装固有频率为580Hz的动力吸振器,如图11所示。该动力吸振器关键设计参数如下:Z向固有频率满足580Hz±5%Hz,质量满足200g±20g。

图11 右悬置支架上安装动力吸振器电机8阶噪声结构优化方案总体如表1所示:

pIYBAGAI9FyATzvgAAEVPhONcuU093.jpg

表1 电机结构优化方案

3.5、电机优化方案效果验证

经整车试验验证,体现电机逆变器壳体三个优化方案及电机右悬置支架安装动力吸振器后,车内电机8阶噪声在490Hz峰值较原状态降低5dB(A),在580Hz峰值降低7dB(A),优化效果明显,且电机8阶噪声水平基本在50dB(A)以下,主观评价7分。电机8阶噪声优化效果如图12所示:

o4YBAGAI9JqALNMwAABrro0li_0190.jpg

图12 车内电机8阶噪声优化前后对比

4、电机8阶噪声主客观对应分析

4.1、主观评价方法

主观评价是评判电机啸叫噪声水平的重要依据,主观评价依据主观评价表对电机啸叫噪声性能水平进行等级划分,主观评价基准如表2所示:

pIYBAGAI9PGAHyctAAC8OY53QxE618.jpg

表2 主观评价基准

4.2、主客观对应分析

本文中某纯电动汽车电机8阶啸叫噪声优化过程采用主观评价和客观测试相结合的方法,最终达成优化目标,主观评价及客观测试对应关系如表3所示:

pIYBAGAI9TCAd5IAAABj5AHXUGA337.jpg

表3 电机8阶噪声主客观对应

5、结论

(1)本文研究了某纯电动汽车电机8阶啸叫噪声,通过激励源与传递路径分析,验证出空气传递是车内电机8阶噪声的主要路径;
(2)通过整车试验和CAE仿真分析相结合,提出电机结构改进方案,优化效果明显,电机8阶噪声水平由55dB(A)降为50dB(A);
(3)进行了电机8阶啸叫噪声主观评价与客观测试对应分析。

本文介绍的电机8阶啸叫噪声优化方法可应用于整车状态下电机噪声的开发和验证工作。

审核编辑:何安

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 汽车电子
    +关注

    关注

    3029

    文章

    8037

    浏览量

    167979
  • 纯电动汽车
    +关注

    关注

    5

    文章

    465

    浏览量

    25775
  • 电机噪声
    +关注

    关注

    0

    文章

    13

    浏览量

    2517
收藏 人收藏

    评论

    相关推荐

    欧洲电动汽车2024年销量出炉

    首次出现同比下降。 从各主要市场表现来看,德国作为欧洲曾经最大的电动汽车市场,由于2023年12月全面停止了购车补贴,该国去年电动汽车销量为380609辆,同比下降27%。法国将亚洲
    的头像 发表于 01-23 11:50 252次阅读

    英国超越德国,成2024年欧洲最大电动汽车市场

    数字不仅彰显了英国在推动新能源汽车发展方面的强劲势头,也反映了消费者对电动汽车的日益认可和接受。与此同时,德国作为欧洲传统的汽车制造强国,其电动汽
    的头像 发表于 01-08 14:45 453次阅读

    电动汽⻋的主要部件及⼯作原理

    电动汽车的主要部件及工作原理
    发表于 10-15 10:32 16次下载

    恩智浦MBDT加速汽车电机控制系统开发

    汽车电气化的推进,也在推动汽车电机控制应用的拓展。因此,找到一种更高效的方案,加速汽车电机控制系统开发的进程,工程师们对此总是抱有浓厚的兴趣。
    的头像 发表于 08-27 09:59 1066次阅读

    新能源汽车电机控制器工作原理

    新能源汽车电机控制器作为电动汽车的“控制中心”,其工作原理涉及多个复杂且相互关联的过程。以下是对新能源汽车电机控制器工作原理的详细阐述,包括其组成、功能、控制策略以及关键技术等方面。
    的头像 发表于 08-08 10:12 2047次阅读

    汽车电机气密性检测仪在汽车制造中的关键角色

    随着汽车工业的持续发展和消费者对汽车性能要求的不断提高,汽车电机的气密性已成为评价汽车质量和安全性的重要指标之一。在这一背景下,汽车电机气密
    的头像 发表于 07-22 13:32 932次阅读
    <b class='flag-5'>汽车电机</b>气密性检测仪在<b class='flag-5'>汽车</b>制造中的关键角色

    电动汽车限功率模式怎么解除

    随着电动汽车的普及,越来越多的人开始关注电动汽车的性能和使用。然而,在使用过程中,有些车主可能会遇到电动汽车限功率模式的问题。限功率模式是指电动汽车在某些特定情况下,为了保护电池和
    的头像 发表于 07-17 14:58 3430次阅读

    电动汽车驱动电机的工作模式

    随着全球对环境保护和可持续发展的重视,电动汽车(EV)作为一种清洁、高效的交通工具,正逐渐受到人们的青睐。电动汽车的核心部件之一是其驱动电机,它直接决定了车辆的动力性能、续航能力以及驾驶体验。本文将详细介绍
    的头像 发表于 06-21 11:28 1221次阅读

    德国电动汽车生产量位居世界第二

    据近期德国汽车工业联合会(VDA)发布的数据显示,截至去年为止,德国共生产出127万台电动汽车(包括电动汽车BEV以及插电式混合动力汽车P
    的头像 发表于 06-11 16:30 885次阅读

    起亚四月全球销量微增0.6%,电动汽车销量上涨

    尽管总体销量表现平缓,但起亚的电动汽车销量持续攀升。起亚预测,到2024年下半年推出新款电动车EV3及升级版EV6之后,
    的头像 发表于 05-20 10:04 436次阅读

    直线电机助力的电动汽车在缅甸市场扩大

    直线电机助力的电动汽车在缅甸市场扩大。近日,缅甸交通和通信部公布的最新数据显示,从2023年1月取消电动汽车进口关税以来,缅甸电动汽车市场持续扩大,2023年该国
    的头像 发表于 03-14 08:15 430次阅读

    电动汽车电池热管理技术研究进展

    摘要:随着电动汽车工业的快速发展,电动汽车的使用已经越来越普遍。汽车正常运行的过程中,锂电池会产生许多热量,为保证锂电池安全运行,需要对电动汽车
    的头像 发表于 03-14 08:08 1742次阅读
    <b class='flag-5'>纯</b><b class='flag-5'>电动汽车</b>电池热管理技术研究进展

    电动汽车用车载充电机OBC的构造与原理

    车载充电机是指固定安装在电动汽车上的充电机,以交流电源作为输入,输出为直流电,为汽车动力电池充电,实现电动汽车动力电池的安全自动充电。关于车
    的头像 发表于 03-12 11:59 2245次阅读

    芯炽科技 电动汽车电机控制传感器可使用SC2161,兼容AD2S1210

    新能源电动汽车在运行过程中需要传感器进行电机和刹车的监控,无刷电动机没有换向机构,需要位置传感器来测试电机转子的角度和转速等参数。传统的磁编码器、光学编码器精度低、抗震动性差、抗腐蚀性
    的头像 发表于 03-04 09:55 479次阅读
    芯炽科技 <b class='flag-5'>电动汽车电机</b>控制传感器可使用SC2161,兼容AD2S1210

    电动汽车充电系统组成和原理

    电动汽车充电系统的主要作用是将外部电源供给的电能转化为电动汽车电池能够接受的电能,并将电能存储到电池中,以供电动汽车驱动电机运行。
    发表于 02-19 17:01 2545次阅读