0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能应对数字化转型挑战的5个领域

姚小熊27 来源:企业网D1Net 作者:企业网D1Net 2021-01-26 14:08 次阅读

人工智能如何帮助组织解决数字化转型挑战?可以从客户服务到资源优化的一些示例中获得经验。

根据调研机构IDC公司最近发布的一份《全球人工智能支出指南》,预计全球人工智能预算将在未来四年翻一番,到2024年将达到1100亿美元。

IDC公司人工智能计划副总裁Ritu Jyoti指出:“越来越多的组织将采用人工智能,而且必须这样做。人工智能是可以帮助组织进行业务敏捷转型、创新和扩展的技术。”

数字业务咨询机构AHEAD公司现场首席技术官Josh Perkins说:“去年发生的疫情证明了人工智能技术的强大力量,人们的问题从‘人工智能技术在我们公司中能做什么?‘转变为‘哪些领域还不适合人工智能?’”

Perkins表示,当使用智能工具和功能解决特定于行业的问题时,人工智能将提供巨大的价值。医疗、银行、保险、零售和制造业的组织中正在出现创造性的应用程序。Perkins说:“这在很大程度上是因为组织希望更好地将数据资产实现货币化,并利用新的数据流来发掘见解。”

人工智能工具帮助应对数字化转型挑战的5个领域

当技术领导者将在现实世界中启用人工智能的数字计划时,了解最大价值所在将会提供帮助。某些主题在各个行业组织不断出现。以下研究一下人工智能领域中功能最强大的一些用例:从机器学习(ML)和自然语言处理(NLP)到边缘人工智能和AIOps。

(1)对话式人工智能:改善客户服务体验

将丰富的客户行为数据、自然语言处理(NLP)和聊天机器人结合起来时会得到什么?通常无需人工干预即可改变客户联系和支持的潜力。

Perkins说:“对自然语言处理(NLP)的大幅改进使每天的客户体验变得更加丰富和活跃。这项技术正在促进机器人与客户之间的对话的深度和自然流畅性。”

当这种方法能够快速访问后端系统时,增强了客户自助服务,组织希望能够更快地为客户解决问题。Perkins预测,在未来几年内,客户将更难辨别他们是在与机器人交谈,还是在与人工客服交谈。

事实上,根据2020年全球各地组织的支出情况,部署自动化客服是最主要的人工智能用例。Perkins说:“目前有许多用例应用于零售和电子商务垂直领域,主要集中在客户服务上。例如在医疗保健领域,会话人工智能被用来协助患者支持和预约安排。”

(2)边缘人工智能:解决带宽、延迟和隐私问题的方法

人工智能曾经只应用在数据中心领域。但是,随着人工智能应用在网络的边缘,它开始为组织解决大量的分布式数据和分析问题。边缘人工智能是在数据来源点嵌入智能功能,无论是物联网终端、智能手机还是自动驾驶汽车。Red Hat公司首席技术战略家G.Nadhan解释说,“换句话说,边缘计算使数据和计算最接近交互点。”

边缘人工智能正在得到广泛应用,其应用范围从智能音箱到街头的摄像头。

边缘处理器制造商Hailo公司首席执行官Orr Danon表示:“直到最近,边缘的人工智能基本上还是理论上的。在2021年,我们可能会看到,由于技术的进步,边缘人工智能的产品将出现增长,这些技术更容易获得,价格也更低廉。边缘人工智能对于管理不断增长的数据量和减轻业务网络日益增长的压力至关重要。在边缘处理数据而无需将数据传输到云端,使设备更强大、更通用、更灵敏、更安全,并有助于合规性。”

一些零售商也将在边缘部署人工智能,以最快的速度和最小的延迟在本地处理本地视频,这在某些情况下为非接触式且无需收银人员的购物打下了基础。商店可以使用摄像头和边缘人工智能来检测远处的物体,并快速处理相关信息。这些数据有助于优化客户等待时间、库存货架和店内体验。

(3)机器和深度学习:网络安全中的较量

不良行为者已经利用人工智能发动网络钓鱼攻击和其他恶意的网络攻击,并利用智能自动化提高网络攻击的速度、数量和种类。调研机构Forrester公司预测,网络罪犯采用Deepfake技术在2021年将使组织损失超过2.5亿美元,他们利用人工智能创造令人信服的音频和视频,并在用户的电子邮件泄露攻击中欺骗用户。

传统的网络缓解技术无法与这种复杂的方法相提并论。因此,人工智能在网络安全和攻击中的使用是Gartner公司在2020年预测的九大安全趋势之一,并指出必须加强人工智能来增强网络安全防御。

在网络安全和威胁情报中有大量的人工智能网络安全应用程序。最常见的用例包括面部和语音识别、垃圾邮件或网络钓鱼识别以及恶意软件检测。机器学习方法可用于检测电子邮件中的异常,模式识别技术可识别需要保护的受监管个人数据,无监督机器学习可对网站进行分类并识别高风险网站,无监督机器学习可在网络钓鱼和垃圾邮件尝试中发现近乎重复的网站。TrendMicro公司最近发表的一篇文章指出,端到端深度学习是检测恶意软件的解决方案。

(4)目标:缓解IT警报疲劳等问题

IT组织需要考虑Ops这个主题。IDC公司指出,IT自动化是2020年人工智能增长最快的用例之一(以及药物研发和人力资源自动化)。正如DevOps研究所的首席研究总监Eveline Oehrlich在最近的一篇文章中指出的那样,AIOps可以证明IT组织具有变革性,因为在IT组织中,运营环境所生成的数据太多了,使领导者的决策受到了影响。在混合云时代,这是不断增长的IT功能队列。机器学习可以解决大量经常冗余的警报,以更加实时或主动的方式帮助管理系统性能,并提供更大的端到端可见性,从而为IT团队节省时间。

为此有充分的理由将人工智能行动列入2021年十大人工智能趋势的名单。而孤立的监控系统无法跟上当今多样化的环境。Gartner公司认为AIOps有五个主要用例:性能分析、异常检测、事件关联、分析,以及IT服务管理。

Perfecto by Perforce公司首席技术官兼产品经理Eran Kinsbruner在最近发表的一篇文章中写道:“这些工具共同构建了一个全面的生产和运营洞察力分析层,可以在大数据和先进的现代软件架构上运行。借助基于人工智能的操作功能,团队可以专注于确定其应用程序的服务运行状况,并获得对其生产数据的控制和可视性。”

随着供应商开始提供AIOps平台解决方案,Forrester公司建议IT领导者寻求那些可以提供跨团队协作功能、端到端数字体验以及无缝集成到整个IT运营管理工具链中的解决方案。

(5)机器学习:可预测的资源优化

能够预测突然变化(供应或需求、医疗保健成果、销售或客户行为)的价值越来越清晰。

在基本层面上,有监督的机器学习(特别是回归)使组织能够建立数学模型,根据一系列预测变量或输入来预测未来的结果。Perkins说,“这种方法在各个行业的商业应用非常广泛,其共同点是能够事半功倍。无论是人力资源、清单资源还是谨慎流程,机器学习都使人们能够观察和定义模式以获取以前无法获得的见解。”

这种技术的用例包括库存优化和重新订购点,可以在特定的轮班或需求期间对员工进行适当的工作安排,甚至提高销售预测的准确性。

责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47208

    浏览量

    238294
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121117
  • 数字化转型
    +关注

    关注

    0

    文章

    264

    浏览量

    9188
收藏 人收藏

    评论

    相关推荐

    戴尔数据湖仓助力企业数字化转型

    数字化转型的浪潮下,企业正面临着前所未有的数据挑战。从传统的结构数据到如今的非结构数据、半结构
    的头像 发表于 12-20 09:31 91次阅读

    纳芯微携手孤波深化数字化转型

    近年来,半导体行业对数字化转型人工智能应用的重视程度日益提升。纳芯微作为国产半导体行业的领导者,积极响应这一趋势,将数字化转型视为提升企业
    的头像 发表于 12-09 13:56 129次阅读

    工业数字化转型如何实现

    和市场需求,明确数字化转型的目标和战略。这包括确定转型的优先级,制定长远规划,以及确定具体的实施路径。 2. 技术升级和应用:利用先进的信息技术,如工业互联网、5G、
    的头像 发表于 11-20 09:41 177次阅读

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能
    发表于 11-14 16:39

    数字化挑战与机遇分析

    随着互联网、大数据、云计算、人工智能等新兴技术的迅猛发展,数字化已经成为全球经济和社会发展的重要驱动力。数字化转型不仅为企业带来了新的商业模式和增长点,也为社会治理、公共服务、教育、医
    的头像 发表于 10-28 09:09 680次阅读

    对话华为大咖,探讨油气行业数字化转型人工智能技术的应用与实践

    行业? 我们请到了华为油气矿山军团专家李阳明老师来分享油气行业在数智转型过程中的现状、挑战与解决方案,探讨人工智能技术如何推动油气行业的数字化
    的头像 发表于 10-19 20:08 820次阅读
    对话华为大咖,探讨油气行业<b class='flag-5'>数字化</b><b class='flag-5'>转型</b>和<b class='flag-5'>人工智能</b>技术的应用与实践

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    驱动科学创新》的第6章为我提供了宝贵的知识和见解,让我对人工智能在能源科学中的应用有了更深入的认识。通过阅读这一章,我更加坚信人工智能在未来能源科学领域中的重要地位和作用。同时,我也意识到在推动
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    5. 展望未来 最后,第一章让我对人工智能驱动的科学创新未来充满了期待。随着技术的不断进步和应用场景的拓展,AI将在更多领域发挥关键作用,从基础科学到应用科学,从理论研究到实践应用,都将迎来前所未有
    发表于 10-14 09:12

    工业园区如何实现数字化转型

    、云计算、AI人工智能等相关技术和应用的不断升级创新,以及政府工作报告多次提出,要促进我国企业数字经济发展,加强数字中国建设整体布局,建设数字信息基础配套设施,推进
    的头像 发表于 06-06 16:47 375次阅读

    5G智能制造热力工厂数字孪生可视平台,推进热力行业数字化转型

    开始探索数字化转型之路。而5G智能制造工厂数字孪生可视平台,正是这一
    的头像 发表于 03-05 16:56 405次阅读

    陶瓷工业5G智能制造工厂数字孪生可视平台,推进陶瓷行业数字化转型

    陶瓷工业5G智能制造工厂数字孪生可视平台,推进行业数字化转型。在陶瓷工业
    的头像 发表于 03-01 10:20 492次阅读

    2024年工业行业转型展望

    行业变革中的挑战与机遇 2024年将是全球工业格局发生重大变化的一年。CADENAS着眼于最重要的五大主题:数字化转型、技能短缺、供应链、可持续发展和人工智能(AI)。这些
    发表于 02-23 16:55

    船舶制造5G智能工厂数字孪生可视平台,推进船舶行业数字化转型

    船舶制造5G智能工厂数字孪生可视平台,推进船舶行业数字化转型。随着
    的头像 发表于 02-22 17:19 566次阅读

    数字化管理成为了企业数字化转型的重要支撑

    数字化转型是企业发展的重要趋势,数字化管理是支撑。RFID技术广泛应用于各个领域,结合数字化智能化
    的头像 发表于 02-03 11:43 476次阅读
    <b class='flag-5'>数字化</b>管理成为了企业<b class='flag-5'>数字化</b><b class='flag-5'>转型</b>的重要支撑

    数字化转型浪潮中的挑战与机遇:企业如何应对七大难点

    随着技术的日益进步,企业数字化转型已成为推动商业模式创新和运营优化的关键。尽管数字化转型提供了无限的可能性,但过程中的难点同样不容小觑。下面,我们将逐一剖析企业
    的头像 发表于 01-10 14:57 531次阅读