0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

美国瘫痪患者用脑信号使用双机械臂吃蛋糕

hl5C_deeptechch 来源:DeepTech深科技 作者:DeepTech深科技 2021-01-27 15:05 次阅读

上个月,瘫痪 30 多年的罗伯特·布兹·克米勒维斯基(Robert Buz Chmielewski)向世界展示了如何通过大脑,控制两支机械手臂拿起餐具给自己喂食的全过程。

视频中,Chmielewski 通过自己的大脑信号使用刀叉切割食物,随后命令机械手臂将食物带到嘴边几英寸处,进而吃掉。

Chmielewski 的成就标志着,受疾病或伤害影响的患者将向恢复自控能力迈出了一大步,第一次,人类可以用双侧大脑植入物使截瘫患者控制两条机械手臂,并产生了两手触摸的感觉。

解码脑信号 控制双臂

Chmielewski 是一名 C6 脊髓损伤的患者,他的大脑健康,脖子以下神经完好无损,但肩膀以下均为瘫痪状态,仅剩肩膀和手腕的一些残余功能。2019 年 1 月,Chmielewski 作为约翰斯·霍普金斯大学一项脑机接口研究的参与者,通过一次长达 10 小时的手术,将六个微电极阵列(MEA)植入大脑两侧。随后,研究者一直试图通过不断的改善和训练,让他获得同时控制两个假肢的能力。

据悉,这项由国防高级研究计划局(DARPA)拨款,由约翰·霍普金斯大学的物理医学与康复学系(PM&R)、应用物理实验室(APL)、神经内科与神经外科共同合作的临床研究,旨在研究可以帮助瘫痪和肢体残缺患者获得更加独立生活能力的技术。

该团队的主要方法是,将六个微电极阵列(MEA)分别植入到参与者的大脑两个半球中,其中一半在运动皮层中,另一半在感觉皮层中。

众所周知,运动皮层是额叶的一个区域,位于中央沟前的后中央回的一大块灰质,在解剖学上称“中央前回”,亦称“第Ⅰ躯体运动区”。它是大脑皮层中参与计划、控制和执行自主运动的区域,支配躯体各部分的运动,电刺激该部位会引起运动反应。

感觉皮层则是负责接收和解读来自身体不同部位的感觉信息。从不同的感受器(例如伤害感受器和热感受器)接收的刺激被转导为动作电位,该动作电位可以沿着一个或多个传入神经元传递到大脑的特定部位。

在该项目中,MEA 可以绕过受损的脊髓,读取大脑产生的运动信号,并刺激感觉信号。此外,这些 MEA 还可以通过电线连接到机械臂(或其他效应器,如光标屏幕,虚拟效应器等),从而允许来自大脑的神经信号向其他设备发送消息,反之亦然。

在实验中,研究小组植入的 MEA 允许计算机读取来自参与者运动皮层的信号,这些信号传达了运动意图。紧接着,计算机解码这些信号并将其发送到机械臂,从而使参与者可以像他真实的手臂一样,控制其运动。

此外,研究小组通过多电极阵列读取大脑信号的方法,有助于开发一种机器学习算法,该算法可解码用户的意图,并将其转变为特定的神经信号模式,最后通过计算机的转换以指导手臂运动。随着 Chmielewski 在脑机接口上进行更多的训练,该算法“学习”他的想法,然后移动手臂,最终会变得越来越熟练。

除了控制义肢,团队还设想,MEA 还应当可以让参与者使用神经信号来控制计算机上的光标或向智能家居设置、提供指令。

双边植入 模拟触感

尽管控制瘫痪肢体对于瘫痪者来说是一项开创性的工作,但这只能解决一半的问题。如果没有感觉的反馈,参与者控制的,实际上只是两只麻木的手臂。没有感官反馈,参与者很难使用正确的力量来拿起杯子,因此,触感可以让参与者无需看手臂就能知道手臂的位置。

和其它脑机接口不同的是,该团队不仅构建了一种可以读取神经信号并将其转化为运动的解码器,还最先在大脑两个半球植入 MEA ,使参与者在独立控制左右机械臂的同时,还能感知双手的触感。

ab181426-5fdd-11eb-8b86-12bb97331649.png

该团队将 MEA 植入到参与者的感觉皮层中的目的,就是模拟感觉,以便在触摸假肢时,参与者将能够感觉到触碰,并精确定位其位置。

当参与者想要移动手臂时,神经信号从他的大脑传播到计算机,再到假肢。当假肢手指触摸到某物时,微小的传感器会将信息发送回他的大脑。对于参与者而言,即使信号反方向流动,他的感觉依旧像是他在用真正的手触摸某物。

在一次采访中,Chmielewski 表示:“他们(手臂)接触的地方变化时,我会有不同的感觉。” “压力变化的范围,从像有人在握住你的手,到细砂纸摩擦手指。”

“我们的最终目标是使诸如饮食之类的活动容易完成,让机器人完成一部分工作,并让参与者负责细节:吃什么、在哪里切、切多大块。”专门从事人机协作的 APL 高级机器人专家 Handelman 解释道,“通过将脑机接口信号与机器人技术、人工智能相结合,我们可以使人类专注于其它更加的重要事情中去。”

APL 神经科学家 Tenore 则表示,下一步,这项工作将不仅要增加参与者可以通过人机协作展示的日常生活活动的数量和类型,“此外,在执行这些任务时为他提供更多的感官反馈,这样他就不必完全依靠视觉来知道他是否成功”。

原文标题:美国瘫痪患者用“大脑意念”使用双机械臂吃蛋糕

文章出处:【微信公众号:DeepTech深科技】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 信号
    +关注

    关注

    11

    文章

    2811

    浏览量

    77187

原文标题:美国瘫痪患者用“大脑意念”使用双机械臂吃蛋糕

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何使用PLC控制myCobot 320机械

    根据持续的用户反馈,目前市场对 PLC 与 myCobot 系统集成的需求很大,因此本文提供的案例介绍了如何使用 PLC(可编程逻辑控制器)来控制 myCobot 320 机械。本案例重点介绍
    的头像 发表于 01-23 14:03 318次阅读
    如何使用PLC控制myCobot 320<b class='flag-5'>机械</b><b class='flag-5'>臂</b>

    使用myCobot 280机械结合ROS2系统搭建机械分拣站

    这篇文章是来自Automatic Addison的开源项目,已获作者授权转载自github。本项目的主要内容是使用myCobot 280机械结合ROS2系统搭建机械分拣站。
    的头像 发表于 01-15 09:22 178次阅读
    使用myCobot 280<b class='flag-5'>机械</b><b class='flag-5'>臂</b>结合ROS2系统搭建<b class='flag-5'>机械</b>分拣站

    深度解析!RK3568 加持机械是如何实现颜色识别与抓取的?

    一、产品简介TL3568-PlusTEB人工智能实验箱国产高性能处理器64位4核低功耗2.0GHz超高主频1T超高算力NPU兼容鸿蒙等国产操作系统二、实验目的1、了解机械识别颜色抓取积木的基本流程
    的头像 发表于 01-15 08:07 179次阅读
    深度解析!RK3568 加持<b class='flag-5'>机械</b><b class='flag-5'>臂</b>是如何实现颜色识别与抓取的?

    RK3568国产实验箱+人工智能机械:跳舞、叠罗汉、夹方块、积木搬运案例全解!

    基于语音控制实现机械特定动作的方法。三、实验原理程序功能通过语音控制机械实现特定复杂动作:机械
    的头像 发表于 12-12 19:01 504次阅读
    RK3568国产实验箱+人工智能<b class='flag-5'>机械</b><b class='flag-5'>臂</b>:跳舞、叠罗汉、夹方块、积木搬运案例全解!

    马斯克Neuralink启动脑机接口控制机械试验

    全新的控制方式,使他们能够借助机械重新获得行动能力。 这一试验的启动,标志着Neuralink在实现将大脑信号直接转化为身体行动这一宏伟目标上迈出了关键的一步。据了解,“Convoy”试验将利用Neuralink的脑机接口设备
    的头像 发表于 11-28 10:30 270次阅读

    机械的高效运作,连接器起关键作用

         机械是灵活且可编程的自动化设备,在工业生产中发挥着至关重要的作用。其广泛的应用领域涵盖了装配与搬运、焊接与喷涂、检测与测量、码垛等多个环节,极大地提升了生产效率与质量,并成功替代人工完成
    的头像 发表于 11-11 18:07 366次阅读

    OrangePi AIpro应用:机械应用开发指南

    2024世界人工智能大会上,香橙派携OrangePiAIpro20T在世博展览馆H1-A301展区亮相,给大家带来AI+互动的沉浸式体验。其中,搭载OrangePiAIpro开发板的智能机械吸引了
    的头像 发表于 08-19 16:42 681次阅读
    OrangePi AIpro应用:<b class='flag-5'>机械</b><b class='flag-5'>臂</b>应用开发指南

    工业机器人和机械的设计、功能和应用有哪些区别?

    机械是一种由多个关节连接而成的机械结构,类似于人的胳膊。它通常具有可旋转或可伸缩的关节,使其能够在空间中执行精确的定位和操作。机械通常由
    的头像 发表于 08-16 09:43 619次阅读

    奥比中光推出2.0版大模型机械

    近期,奥比中光研发团队融合前沿多模态大模型技术,推出最新2.0版大模型机械演示方案。新方案搭载公司最新深度相机Gemini 335L和Femto Bolt,能够基于语音指令,自动执行沏茶、插花、滴
    的头像 发表于 07-19 16:50 827次阅读

    大象机器人开源协作机械机械接入GPT4o大模型!

    本文已经或者同济子豪兄作者授权对文章进行编辑和转载 引言 随着人工智能和机器人技术的快速发展,机械在工业、医疗和服务业等领域的应用越来越广泛。通过结合大模型和多模态AI,机械能够实
    的头像 发表于 07-03 14:09 1073次阅读
    大象机器人开源协作<b class='flag-5'>机械</b><b class='flag-5'>臂</b><b class='flag-5'>机械</b><b class='flag-5'>臂</b>接入GPT4o大模型!

    国产Cortex-A55人工智能教学实验箱_基于Python机械跳舞实验案例分享

    一、实验目的 本实验通过TL3568-PlusTEB教学实验箱修改机械不同舵机的角度,增加延迟时间,从而做到机械跳舞的效果。 二、实验原理 ROS(机器人操作系统) ROS(机器
    发表于 06-28 14:37

    基于六维力传感器的机械自动装配应用

    六维力传感器是一种特殊的力觉传感器,可以测量物体在笛卡尔坐标系下三个轴向的力和力矩,其内部采用高度敏感的材料和精密机械构造,可以为机械提供更高的测量精度,满足不同场景下的测量需求。作为机械
    的头像 发表于 06-06 13:49 932次阅读
    基于六维力传感器的<b class='flag-5'>机械</b><b class='flag-5'>臂</b>自动装配应用

    Neuralink助力瘫痪患者重获数字世界自然交互体验

    据悉,全美现有大约18万四肢瘫痪患者,每年新增1.8万例脊髓伤害病例。由于与数字化世界互动困难,这类患者处于较弱的社会地位,面临着经济困境。为此,Neuralink致力于研发高性能脑机接口,帮助
    的头像 发表于 05-09 11:24 436次阅读

    机械技术的前沿探索:年度案例回顾!

    在过去的几年里,机械技术经历了前所未有的发展,其应用领域从传统的制造业扩展到了医疗、服务、物流等多个新兴行业。这种跨界扩展得益于科技的飞速进步,尤其是在传感器、控制系统和人工智能领域的突破。特别是
    的头像 发表于 03-12 15:14 1264次阅读
    <b class='flag-5'>机械</b><b class='flag-5'>臂</b>技术的前沿探索:年度案例回顾!

    如何去提升机械的位置控制性能?

    1.背景介绍 机械的位置控制是机械最重要的功能。机械的位置控制精度也是研究者及工程师一直关
    的头像 发表于 03-05 08:43 1158次阅读
    如何去提升<b class='flag-5'>机械</b><b class='flag-5'>臂</b>的位置控制性能?