0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究人员开发“液态”神经网络 可适应快速变化的训练环境

工程师邓生 来源:cnBeta.COM 作者:cnBeta.COM 2021-01-29 10:46 次阅读

想要适应自动驾驶、控制机器人、医疗诊断等场景,就必须让神经网络适应快速变化的各种状况。好消息是,麻省理工(MIT)计算机科学与人工智能实验室(CSAIL)的 Ramin Hasani 团队,已经设计出了一种具有重大改进的“液态”神经网络。其特点是能够在投入训练阶段之后,极大地扩展 AI 技术的灵活性。

通常情况下,研究人员会在训练阶段向神经网络算法提供大量相关的目标数据,来磨炼其推理能力。

期间通过对正确的响应加以奖励,以优化其性能。然而传统的训练方案,明显还是过于“刻板”了。

有鉴于此,Ramin Hasani 与团队成员合作开发了一套新方法,让神经网络可以像“液体”一样,随着时间的流逝而更好地适应“正确”的新信息。

举个例子,如果无人驾驶汽车上的感知神经网络能够分辨晴朗的天空和大雪等环境,就可以更好地顺应情况的变化、并维持较高的性能。

这项新研究的主要特点,是侧重于时间序列的适应性。比之建立于训练数据的多快照或时间上的静态时刻,可流动的液态神经网络可以将时间序列或图像序列也考虑进来,而不是孤立的各个片段。

得益于这种系统设计方法,与传统神经网络相比,MIT 的液态系统实际上更便于开展观察研究。

前一种 AI 通常被称作‘黑盒’,尽管算法开发者明确知晓输入信息的判定准则,但通常无法确定其中到底发生了什么。

而液态神经网络在这部分提升了透明度、对复杂计算节点的依赖性也更少,因此还具有相当不错的成本优势。

最终结果表明,在预测已知数据集的未来值方面,液态神经网络的准确性要显著优于其它替代方案。

下一步,Hasani 将与团队成员继续改进液态神经网络的性能表现,并努力将之推向实际应用。

责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100537
  • 数据
    +关注

    关注

    8

    文章

    6892

    浏览量

    88827
  • 自动驾驶
    +关注

    关注

    783

    文章

    13684

    浏览量

    166147
收藏 人收藏

    评论

    相关推荐

    卷积神经网络的实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 202次阅读

    【飞凌嵌入式OK3576-C开发板体验】RKNN神经网络算法开发环境搭建

    验过程,以及实验过程遇到的些许问题,与该文档有所出入。没有使用大量的篇幅重新描述实现过程,如果有同志想研究RKNN算法还是要结合RKNNSDK快速上手指南的。 二、准备开发环境 新建一
    发表于 10-10 09:28

    如何使用经过训练神经网络模型

    使用经过训练神经网络模型是一个涉及多个步骤的过程,包括数据准备、模型加载、预测执行以及后续优化等。
    的头像 发表于 07-12 11:43 833次阅读

    脉冲神经网络怎么训练

    脉冲神经网络(SNN, Spiking Neural Network)的训练是一个复杂但充满挑战的过程,它模拟了生物神经元通过脉冲(或称为尖峰)进行信息传递的方式。以下是对脉冲神经网络
    的头像 发表于 07-12 10:13 492次阅读

    怎么对神经网络重新训练

    重新训练神经网络是一个复杂的过程,涉及到多个步骤和考虑因素。 引言 神经网络是一种强大的机器学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。然而,随着时间的推移,数据分布可能会发生
    的头像 发表于 07-11 10:25 417次阅读

    BP神经网络的基本结构和训练过程

    网络结构,通过误差反向传播算法(Error Backpropagation Algorithm)来训练网络,实现对复杂问题的学习和解决。以下将详细阐述BP神经网络的工作方式,涵盖其基本
    的头像 发表于 07-10 15:07 3498次阅读
    BP<b class='flag-5'>神经网络</b>的基本结构和<b class='flag-5'>训练</b>过程

    如何利用Matlab进行神经网络训练

    Matlab作为一款强大的数学计算软件,广泛应用于科学计算、数据分析、算法开发等领域。其中,Matlab的神经网络工具箱(Neural Network Toolbox)为用户提供了丰富的函数和工具
    的头像 发表于 07-08 18:26 1673次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 675次阅读

    反向传播神经网络和bp神经网络的区别

    神经网络在许多领域都有广泛的应用,如语音识别、图像识别、自然语言处理等。然而,BP神经网络也存在一些问题,如容易陷入局部最优解、训练时间长、对初始权重敏感等。为了解决这些问题,研究者们
    的头像 发表于 07-03 11:00 677次阅读

    bp神经网络和卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,并通
    的头像 发表于 07-03 10:12 1022次阅读

    卷积神经网络训练的是什么

    训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络是一种前馈深度学习模型,其核心思想是利用卷积操作提取输入数据的局部特征,并通过多层结构进
    的头像 发表于 07-03 09:15 351次阅读

    如何训练和优化神经网络

    神经网络是人工智能领域的重要分支,广泛应用于图像识别、自然语言处理、语音识别等多个领域。然而,要使神经网络在实际应用中取得良好效果,必须进行有效的训练和优化。本文将从神经网络
    的头像 发表于 07-01 14:14 397次阅读

    基于毫米波雷达的手势识别神经网络

    环境和位置对每个人重复这个过程,使我们能够全面训练和测试模型。LOOCV的结果被编译成一个混淆矩阵,如图6所示。平均识别率高达98.4%,令人印象深刻。这些发现证明了我们的神经网络在识别所有
    发表于 05-23 12:12

    鼾声监测神经网络

    中的40个特征训练的高斯混合模型(GMM)29,基于子带中的平均归一化能量的线性回归模型30,基于时域中的多个特征的支持向量机(SVM)31和基于时间和频谱特征的人工神经网络(ANN)带32,33。结果
    发表于 05-15 12:14

    Kaggle知识点:训练神经网络的7个技巧

    训练神经网络的挑战在训练数据集的新示例之间取得平衡。七个具体的技巧,帮助您更快地训练出更好的神经网络
    的头像 发表于 12-30 08:27 632次阅读
    Kaggle知识点:<b class='flag-5'>训练</b><b class='flag-5'>神经网络</b>的7个技巧