0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MIT成功研发液态神经网络

如意 来源:cnBeta.COM 作者:cnBeta.COM 2021-01-29 11:32 次阅读

想要适应自动驾驶、控制机器人、医疗诊断等场景,就必须让神经网络适应快速变化的各种状况。好消息是,麻省理工(MIT)计算机科学与人工智能实验室(CSAIL)的 Ramin Hasani 团队,已经设计出了一种具有重大改进的“液态”神经网络。其特点是能够在投入训练阶段之后,极大地扩展 AI 技术的灵活性。

通常情况下,研究人员会在训练阶段向神经网络算法提供大量相关的目标数据,来磨炼其推理能力。

期间通过对正确的响应加以奖励,以优化其性能。然而传统的训练方案,明显还是过于“刻板”了。

有鉴于此,Ramin Hasani 与团队成员合作开发了一套新方法,让神经网络可以像“液体”一样,随着时间的流逝而更好地适应“正确”的新信息。

举个例子,如果无人驾驶汽车上的感知神经网络能够分辨晴朗的天空和大雪等环境,就可以更好地顺应情况的变化、并维持较高的性能。

这项新研究的主要特点,是侧重于时间序列的适应性。比之建立于训练数据的多快照或时间上的静态时刻,可流动的液态神经网络可以将时间序列或图像序列也考虑进来,而不是孤立的各个片段。

得益于这种系统设计方法,与传统神经网络相比,MIT 的液态系统实际上更便于开展观察研究。

前一种 AI 通常被称作‘黑盒’,尽管算法开发者明确知晓输入信息的判定准则,但通常无法确定其中到底发生了什么。

而液态神经网络在这部分提升了透明度、对复杂计算节点的依赖性也更少,因此还具有相当不错的成本优势。

最终结果表明,在预测已知数据集的未来值方面,液态神经网络的准确性要显著优于其它替代方案。

下一步,Hasani 将与团队成员继续改进液态神经网络的性能表现,并努力将之推向实际应用。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100522
  • 液态
    +关注

    关注

    0

    文章

    10

    浏览量

    7167
  • MIT
    MIT
    +关注

    关注

    3

    文章

    253

    浏览量

    23360
收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 167次阅读

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1198次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 813次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 489次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 625次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1105次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 663次阅读

    卷积神经网络与循环神经网络的区别

    在深度学习领域,卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN)是两种极其重要
    的头像 发表于 07-03 16:12 2629次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小化误差的
    的头像 发表于 07-03 11:00 666次阅读

    bp神经网络是深度神经网络

    BP神经网络(Backpropagation Neural Network)是一种常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络在某些方面与深度
    的头像 发表于 07-03 10:14 675次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 997次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原理,包括其
    的头像 发表于 07-02 14:44 551次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 2813次阅读

    深度神经网络模型有哪些

    深度神经网络(Deep Neural Networks,DNNs)是一类具有多个隐藏层的神经网络,它们在许多领域取得了显著的成功,如计算机视觉、自然语言处理、语音识别等。以下是一些常见的深度
    的头像 发表于 07-02 10:00 1146次阅读

    神经网络架构有哪些

    神经网络架构是机器学习领域中的核心组成部分,它们模仿了生物神经网络的运作方式,通过复杂的网络结构实现信息的处理、存储和传递。随着深度学习技术的不断发展,各种神经网络架构被提出并广泛应用
    的头像 发表于 07-01 14:16 595次阅读