0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

物理学家提出新型磁性火箭推进器概念

如意 来源:cnBeta.COM 作者:cnBeta.COM 2021-02-01 13:53 次阅读

据外媒New Atlas报道,由于美国能源部(DOE)普林斯顿等离子体物理实验室(PPPL)的物理学家Fatima Ebrahimi开发的一种新的火箭概念,利用磁场产生推力,前往火星的载人任务可能会更加实际。

在过去的64年里,机器人卫星和探测器取得了显著的成功,但这些卫星和探测器的体积都比较小,最重的是ATV货运飞船,满载重量为44738磅(20293公斤)--而且那个飞船只进入了低地轨道。最大的深空探测器是前往土星的卡西尼-惠更斯任务,它的重量为12467磅(5655公斤)。

这是因为人类成为真正的航天物种的最大障碍是用于推动航天器穿越太阳系和更远的地方的发动机。化学火箭可以推出令人印象深刻的推力,但比冲力非常小。也就是说,在推进剂用完之前,它们不能发射很长时间。电动推进系统,如Hall 推进器,则正好相反。它们的推力只相当于一枚小硬币的重量,但它们可以燃烧几个月,而不是几分钟,所以它们可以(慢慢地)积累到很高的速度。

不幸的是,这两种燃料对于将宇航员载到火星上都没有什么吸引力。其中一种可能会快速启动,另一种可能会缓慢启动,但它们都意味着数月甚至数年的漫长而危险的航行。这两种基本的推进方式都有各自的优缺点,但至少在短期内,真正需要的是一种结合了两者特性的推进方式。理想的情况是,具有更高的推力和更大的比冲力的东西。

新的普林斯顿概念的工作原理是使用同样的机制,将作用于太阳耀斑。这些耀斑由带电的原子和称为等离子体的粒子组成,它们被困在强大的磁场中,在那里发生复杂的相互作用。

对于推进系统来说,Ebrahimi对一种叫做磁重联的相互作用特别感兴趣,这是磁能转化为粒子的动能、热能和辐射能的过程。这种现象不仅在太阳上看到,而且在地球大气层和托卡马克核聚变反应堆内也能看到,比如PPPL的国家球面环面实验(NSTX)。

在一个非常普遍的方式,磁推进器就像航天器上越来越常见的离子推进器。这些推进器的工作原理是给由氙等重原子组成的推进剂充电,然后利用电场对其进行加速。对于新概念的推进器来说,是由磁场来加速的。

到目前为止,PPPL计算机和加州伯克利劳伦斯伯克利国家实验室的国家能源研究科学计算中心的计算机模拟结果显示,磁重联推进器产生的速度可以比目前的电力推进系统快10倍。

“长途旅行需要几个月或几年的时间,因为化学火箭发动机的比冲力很低,所以飞行器需要一段时间才能达到速度,”Ebrahimi说。“但如果我们基于磁重联制造推进器,那么可以想象,我们可以在更短的时间内完成长距离任务。”

除了缩短旅行时间,新的推进器概念还可以通过微调磁场进行节流。此外,推进器不只是射出等离子体,而且还能射出等离子体团,也就是包含在磁泡中的等离子体球,增加更多的动力。另外,推进器不依赖重元素作为推进剂,可以装载更轻、更便宜的元素。

“其他推进器需要重气体,由氙气等原子构成,而在这个概念中,你可以使用任何类型的气体,”Ebrahimi说。

该研究发表在《等离子体物理学杂志》上。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 火箭
    +关注

    关注

    0

    文章

    389

    浏览量

    28894
  • 推进器
    +关注

    关注

    1

    文章

    34

    浏览量

    4930
  • 航天航空
    +关注

    关注

    0

    文章

    190

    浏览量

    7577
收藏 人收藏

    评论

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·欣顿
    的头像 发表于 10-10 00:11 3864次阅读

    神经网络理论研究的物理学思想介绍

    本文主要介绍神经网络理论研究的物理学思想 神经网络在当今人工智能研究和应用中发挥着不可替代的作用。它是人类在理解自我(大脑)的过程中产生的副产品,以此副产品,人类希望建造一个机器智能来实现机器文明
    的头像 发表于 01-16 11:16 260次阅读
    神经网络理论研究的<b class='flag-5'>物理学</b>思想介绍

    Litestar 4D:McCree莫克利曲线

    德克萨斯农工大学土壤与作物科学系教授、教育物理学家,发表了题为“作用光谱,吸收和作物的光合作用的量子产率”的开创性论文。这项研究同行的评议是关于植物光吸收的最详细的研究之一,至今仍被参考和引用。McCree
    发表于 01-14 09:37

    FlexDDS NG多通道相位连续相干捷变射频源技术资料V1

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下一代波形发生
    发表于 12-24 13:32 0次下载

    无所不能的MATLAB|证明曲速引擎的物理学原理

    中随处可见,但这“科学”部分却始终无法实现。 据《大众机械》报道,“研究人员一直对曲速引擎的概念很感兴趣,这一概念由墨西哥物理学家明戈·阿尔库贝利于 1994 年首次提出。”“根据理论
    的头像 发表于 12-04 09:50 255次阅读
    无所不能的MATLAB|证明曲速引擎的<b class='flag-5'>物理学</b>原理

    FlexDDS-NG直接数字信号合成器(DDS)/波形发生

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下一代波形发生
    的头像 发表于 11-28 15:00 257次阅读

    导电滑环在船舶推进器中的作用

    在船舶工业蓬勃发展的今天,船舶推进器的性能对于整个船舶的航行至关重要,而其中一个关键的组件 —— 滑环,直接关系到船舶的航行效率与安全。船舶推进器滑环通常由定子和转子两大部分构成。在转子和定子
    的头像 发表于 11-07 15:40 250次阅读

    欧姆定律的实际应用实例

    欧姆定律是电气工程和物理学中的一个基本定律,它描述了电流、电压和电阻之间的关系。这个定律由德国物理学家乔治·西蒙·欧姆在1827年首次提出,其公式为 V = IR,其中 V 代表电压(伏特),I
    的头像 发表于 10-28 15:27 1378次阅读

    开尔文接法在电力电子中的应用

    物理学家威廉·汤姆森(William Thomson,即开尔文)于1856年提出的。在测量电阻时,由于导线和电阻的接触点存在接触电阻,这会导致测量结果的误差。开尔文接法通过将测量电流和测量电压的导线分开,从而减小接触电阻对测量
    的头像 发表于 08-27 15:25 1104次阅读

    文氏桥振荡的原理和应用

    文氏桥振荡(Wien Bridge Oscillator),又称文氏电桥振荡电路或RC桥式正弦波振荡,是一种基于RC串并联网络实现的振荡电路,由德国物理学家Max Wien在1891年发明。这种振荡
    的头像 发表于 07-30 18:06 3223次阅读

    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    电润湿(electrowetting)现象于1875年由法国物理学家Lippmann提出,作为现有最成熟的液滴电操控方法,已成功应用于数字微流控、传热强化、淡水收集等领域。
    的头像 发表于 04-19 18:24 1886次阅读
    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    了解几位发明天线的先驱

    1864年左右,苏格兰物理学家詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)提出了无线电理论。
    发表于 03-28 13:54 951次阅读
    了解几位发明天线的先驱

    什么是超快激光?超快激光的应用有哪些呢?

    激光的原理早在 1916 年已经由著名物理学家爱因斯坦(Albert Einstein)的受激辐射理论所预言。
    的头像 发表于 03-11 14:36 1838次阅读
    什么是超快激光?超快激光的应用有哪些呢?

    电容单位为什么叫法拉?电容器是如何装电、放电的?

    电容单位为什么叫法拉?电容器是如何装电、放电的? 电容单位法拉的由来 电容单位法拉是以英国物理学家迈克尔·法拉第的名字而命名的。法拉第是19世纪最重要的物理学家之一,他对电磁学的研究做出了重大贡献
    的头像 发表于 02-02 10:08 2661次阅读