0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能的三个基础支柱是什么

姚小熊27 来源:人工智能实验室 作者:人工智能实验室 2021-02-18 09:24 次阅读

人工智能计划落空时,通常会把责任归咎于技能差距。但是还有更多。您的企业组织是否优先考虑这三个基础人工智能支柱?

聘请合适的技术人才仍然是企业组织采用人工智能(AI)的重要障碍。根据O‘Reilly最近的一项调查,略多于六分之一的受访者表示,雇用和保留具有人工智能技能的专业人员很困难,这是其企业组织采用人工智能的重大障碍。

尽管人才缺口仍然是对话的主要内容,但这一数字与去年相比有所减少,这表明其他挑战正成为企业探索和部署人工智能项目的首要考虑因素。

不过,技术技能差距并不是采用人工智能的最大障碍,也不是那么多人工智能项目失败的原因。实际上,根据O’Reilly公司的调查,受访者认为缺乏机构支持是最大的问题,其次是确定合适的业务用例时遇到困难。

当然,这是一个更难以下咽的药丸:这意味着真正的挑战在于我们,而不是只有数量有限的专业人员来完成这项工作。

人工智能项目成功的三大支柱

那么企业组织如何避免人工智能项目的常见陷阱呢?与其他技术实施一样,这全都取决于公司范围内的适当培训,生产环境以及适当的基矗有了这三个支柱,您就可以更早地实现人工智能的商业价值。

1、正确的基础

数据科学家必须具有高效的工具,具有领域专长并且可以访问相关数据。尽管从处理偏见预防,可解释性,概念漂移和类似要求等方面对人工智能技术的理解已得到很好的理解,但许多团队在这里仍然不够。企业组织必须学习如何在生产中部署和操作人工智能模型。这就需要部署DevOps、SecOps和新兴的人工智能Ops工具和流程,以便模型能够随着时间的推移在生产中继续准确地工作。产品经理和业务主管必须从一开始就参与其中,以便重新设计新的技术功能并决定如何应用这些技术来使客户满意。

尽管在过去几年中,教育和工具有了显着改善,但实际生产中运行的人工智能模型仍有很大的改进空间。因此,产品管理和用户交互设计已成为人工智能成功的常见障碍。

这些问题可以通过动手教育来解决。在教室和会议厅外,来自企业组织各部门的专业人员必须获得实际从事人工智能项目的经验,了解他们可以做什么以及该技术如何推动您的业务发展。

2、全公司范围内的合作与培训

当然,人才是问题的一部分,但不仅需要数据科学人才。问题的根源通常在于业务和产品专业知识。与技术人才一样重要,了解人工智能如何在产品中发挥作用以及如何将人工智能转化为更好的客户体验和新收入同样重要-而且责任不仅仅在于研发团队。

例如,我们拥有可以像人类一样准确地读取X射线的算法,但是我们现在才刚开始将此功能集成到临床工作流程中。如果不对医生和护士进行如何使用这项技术以简化其工作流程的培训,则对他们或患者没有任何价值。

能够训练和部署准确的人工智能模型并不能解决如何最有效地使用它们来帮助您的客户的问题。为此,需要对所有企业组织学科进行培训,包括销售,营销,产品,设计,法律,客户成功,财务等方面,以了解该技术为何有用以及它将如何影响其工作职能。

做得好,新的支持人工智能的功能使产品团队能够完全重新考虑用户体验。

做得好,新的支持人工智能的功能使产品团队能够完全重新考虑用户体验。Netflix或Spotify将推荐添加为辅助功能与围绕内容发现设计用户界面之间的区别。这有很大的不同,但要实现这个目标还需要一个村庄。因此,由执行团队带头的全公司范围的收购对于人工智能成功至关重要。

3、适当的生产环境

并非所有生产环境都相同,因此并非所有结果都相同。了解基于企业组织拥有的人才、基础设施和数据的人工智能项目的局限性,并从一开始就设定明确的期望非常重要。

例如,最近的一篇研究论文(针对ACM计算机系统人为因素会议(CHI)系列学术会议而完成)探索了一种新的深度学习模型,该模型用于从患者眼睛的图像中检测出糖尿病性视网膜病变。科学家们训练了一种深度学习模型,从过去几年的眼科检查中的角膜照片中识别出患者的糖尿病性视网膜病变的早期阶段。目的是减少失明,这种失明是未经治疗的疾病症状。

该论文描述了在泰国农村地区的诊所中使用相同准确有效的模型时发生的情况:用于为患者的眼睛拍摄图像的机器并不像用于训练模型的机器那样复杂。如训练有素的模型所假设的,所使用的检查室并非完全黑暗。对于某些患者来说,放假一天来进行后续随访或进行其他检查不是一个可行的选择。首先,并不是所有的医生和护士都接受过培训,以解释为什么需要这项新测试。

缺乏适当的基础设施和医院工作人员的凝聚力教育,加上对实际局限性的理解,是人工智能项目失败的一个典型例子。

随着教育赶上行业,人工智能人才缺口在未来几年仍将是一个挑战。但是与此同时,企业组织可以采取一些步骤来确保其人工智能项目取得成功。

仅仅训练您的模型是不够的,还需要训练您的企业组织。花时间对您的业务的各个方面进行教育,以了解您为何要执行某个人工智能项目,该项目将如何影响他们的角色和客户体验以及期望是什么。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47425

    浏览量

    238948
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能的发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的发展机遇。同时,这也要求科研人员、政策制定者和社会各界共同努力,构建一健康、包容的AI科研生态系统。 总之,《AI for Science:人工智能驱动科学创新》的第一章为我打开了一全新的视角,让我
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    满足人工智能图像处理中对于高性能、低功耗和特定功能的需求。 低功耗 : 在人工智能图像处理中,低功耗是一重要的考量因素。RISC-V架构的设计使其在处理任务时能够保持较低的功耗水平,这对于需要
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    芯片设计的自动化水平、优化半导体制造和封测的工艺和水平、寻找新一代半导体材料等方面提供帮助。 第6章介绍了人工智能在化石能源科学研究、可再生能源科学研究、能源转型三个方面的落地应用。 第7章从环境监测
    发表于 09-09 13:54

    人工智能的第三支柱:数据存储

    借助人工智能数据周期(AI Data Cycle)存储框架,释放数据的AI力量 西部数据公司副总裁兼中国区总经理 蔡耀祥 西部数据公司副总裁兼中国区总经理蔡耀祥    如今,AI无处不在。各个行业正
    的头像 发表于 09-06 10:45 307次阅读
    <b class='flag-5'>人工智能</b>的第<b class='flag-5'>三支柱</b>:数据存储

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    中国人工智能框架的三个行业趋势

    由于历史和使用习惯的原因,TensorFlow 和 PyTorch 在中国的知名度也领先于其他人工智能框架,分别排在前两位。
    发表于 01-29 14:41 500次阅读
    中国<b class='flag-5'>人工智能</b>框架的<b class='flag-5'>三个</b>行业趋势