0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于单片机和AD9850芯片实现电磁超声波激励硬件系统的应用方案

电子设计 来源:现代电子技术 作者:高松巍,李冰,邢燕 2021-02-22 10:14 次阅读

作者:高松巍,李冰,邢燕好

电磁超声是一种非接触式的超声检测方法,不需要与被测对象有任何的物理接触,不需要耦合剂,能够应用于被测对象处于高温、高速、粗糙表面的检测条件下。因为不接触的特点,所以用来激励电磁超声换能器的激励电源是极其重要的一部分,激励电源要产生高峰值电流、窄脉宽特点的电脉冲。对于不同的被测物体,采用合适的参数激发电磁超声,使电磁超声换能器的电/声转换效率最大化,也是提高信噪比的关键之一。因此,设计脉冲串频率、个数、相位均可调的激励电源是非常必要的。本文设计了一种基于DDS技术的电磁超声波激励电源。

1 电磁超声波激励源组成

电磁超声波激励电源主要包括DDS信号发生电路、脉冲串控制电路、功率放大电路、阻抗匹配电路,如图1所示。为了方便调节激发脉冲的频率、相位和控制激发脉冲的个数,上位机单片机进行串行通讯,用来设定激励电源的参数,单片机控制DDS芯片AD9850产生频率为1 kHz~2 MHz的可调方波信号,单片机控制可编程逻辑器件(CPLD)MAX7064完成脉冲串的个数和相位的设定。由于信号发生电路产生的脉冲信号功率较弱,电压幅值低,不足于驱动VMOS管,在脉冲发生电路与功率放大电路之间加一级驱动电路,对信号进行放大。由信号发生器电路和驱动电路组成控制电路,控制 VMOS管的开通和关断。在VMOS管电路关断时,高压电源通过充电电阻对电容进行充电;当VMOS管导通时,电容、VMOS管以及探头(包括阻抗匹配电路)形成放电回路,使得在探头两端能够得到高峰值的窄脉宽电脉冲。

基于单片机和AD9850芯片实现电磁超声波激励硬件系统的应用方案

为了使电/声转换效率达到最大化,在功率放大电路与换能器之间增加了阻抗匹配电路,由阻抗匹配变压器和电容组成。功率放大电路采用半桥功率放大方式,其中,功率开关使用MOSFET模块。

2 激励源硬件实现

2.1 DDS原理及电路信号发生电路

为了得到最佳的电/声转换,激励频率应当与探头的谐振频率一致,因此要求控制信号的频率可以灵活改变。采用单片机和直接数字频率合成(DDS)技术来设计信号发生器电路。DDS技术是一种采用数字控制信号的相位增量技术,具有频率分辨率高,稳定性好,可灵活产生多种信号的优点。基于DDS的波形发生器是通过改变相位增量寄存器的值 △phase(每个时钟周期的度数)来改变输出频率的。每当N位全加器的输出锁存器接收到一个时钟脉冲时,锁存在相位增量寄存器中的频率控制字就与N位全加器的输出相加。在相位累加器的输出被锁存后,即作为波形存储器的一个寻址地址,该地址对应波形存储器中的内容就是一个波形合成点的幅度值,然后经D/A 转换变成模拟值输出。当下一个时钟到来时,相位累加器的输出又加一次频率控制字,使波形存储器的地址处于所合成波形的下一个幅值点上。最终,相位累加器检索到足够的点就构成了整个波形。DDS的输出信号频率由式(1)计算:

式中:Fout为输出频率;△phase为频率控制字;FCLK为参考频率。

DDS的频率分辨率定义为:

式中:△Fout为频率分辨率。

由于基准时钟的频率一般固定,因此相位累加器的位数决定了频率分辨率,位数越多,分频率越高。以单片机STC89C516为控制核心,采用并行输入的方式实现对AD9850控制字的写入,通过上位机串行通讯控制方波的频率。AD9850的输入时钟采用50 MHz有源晶振,输出频率范围可从几赫兹到几兆赫兹,但是整个系统的输出频率范围由后级功率放大电路中一些时间常数决定,所以频率范围为1 kHz~2 MHz可调。将单片机的P1口连接到AD9850的并行输入口,P3.6和P3.7完成单片机对AD9850的输入/输出控制。AD9850控制字写完之后,便由IOUT输出相应频率的正弦波信号。为了使输出频率不受高频斜波的干扰,选用两级丌型LC低通滤波器,其动态范围带宽为0~40 MHz,将纯净的正弦波送AD9850的比较器端口,最终由QOUT输出方波。DDS信号发生电路图如图2所示。

2.2 脉冲串控制电路

为了调节电磁超声的谐振点,要求控制信号的个数可以灵活改变,由于电磁超声换能器 (EMAT)采用了电磁铁,这就要求激励源的相位应与电磁铁的50 Hz工频相位相一致,并能在0~180°之间做出调整。采用单片机控制可编程逻辑器件(CPLD),在CPLD内部完成对脉冲串个数和相位的控制。最终由上位机与单片机通讯产生频率、个数、相位均可调的脉冲串。将单片机的P0,P2口分别与CPLD连接作为地址和数据接口,P3.4,P3.5作为控制端口,当单片机将脉冲串的个数和相位写入CPLD后,便输出HO,LO两路互补单极性方波信号。

2.3 功率放大电路和阻抗匹配电路设计

为了增大电磁超声波的强度,需将激励信号的功率进一步放大。根据电磁超声波的强度与电流的平方成正比,可利用功率放大电路实现信号电流的放大。

功率放大电路采用大功率管(MOSFET)组成半桥功率放大电路。MOSFET具有开关速度快,可承受高压,且高频特性好,输入阻抗高,驱动功率小,无二次击穿问题等特点。栅极驱动的要求是触发脉冲有足够快的上升和下降速度。要使功率MOSFET充分导通,触发脉冲的电压要高于功率MOSFET的开启电压。MOSFET管的类型很多,如STW15NB50,IRF840等。在该设计中选用STW15NB50,其最短开通时间为24 ns,关断时间为15 ns,漏源电压VDS可达到500 V,峰值脉冲电流58 A,能够满足设计要求。

图3为半桥功率放大电路,R1,R2为桥平衡电阻;C1,C2为桥臂电容;D1,D2为桥开关吸收电路元件。其工作原理如下:两个反相的方波激励信号分别接到两个开关管的基极,当HO为高电平,LO为低电平时,Q1导通,Q2关闭,电流通过Q1至变压器初级向电容C2充电,同时C1上的电荷向Q1和变压器初级放电,从而在输出变压器次级感应一个正半周期脉冲电压;当HO为低电平,LO为高电平时,Q2被触发导通,Q1关闭,电流通过电容C1和变压器初级充电,而C2的电荷也经由变压器初级放电,在变压器次级感应一个负半周期脉冲电压,从而形成一个工作频率周期的功率放大波形。由于功放管工作在伏安特性曲线的饱和区或截止区,集电极功耗降到最低限度,从而提高了放大器的能量转换效率,使之可达80%以上。

MAX4428,IRF系列的驱动芯片或由三极管组成的放大电路均可用于驱动MOSFET管。但是,MAX4428和其他一些集成驱动芯片的驱动频率一般只能达到200 kHz左右,而本设计采用三极管如图4连接,驱动电路频率可以达到2 MHz左右,输出无杂波且成本低,能够成功地驱动MOS管的开/断。

为了使输出的瞬时功率最大,需要对探头的阻抗进行匹配。在功率放大输出端加补偿阻抗,使整个电路的感抗和容抗相抵消,发射的功率最大,电能转换成声能的效率最高,匹配电路如图3虚线框中所示,半桥逆变输出经传输线变压器耦合后通过电容连接到换能器上。传输线变压器由双绞线和磁环组成,电路中脉冲串发射频率在1 MHz时激励源输出阻抗为50 Ω;由于被测工件也属于换能器的一部分,所以在对探头阻抗进行测量时,应将探头置于工件表面,若测得负载阻抗为500 Ω,则双绞线匝数应为10左右。

经过调谐匹配,换能器在电磁超声功率源驱动下达到谐振。图5为采集的换能器的激励电压波形。可见获得了频率为纯净的正弦波,在外接电压为100 V时,其峰一峰值接近100 V。

3 激励源软件设计

软件设计主要是对单片机进行编程,实现与上位机通讯、控制CPLD的输出、调节AD9850输出频率等。程序流程如图6所示。

4 结 语

采用DDS技术和单片机控制技术的电磁超声激励电源硬件结构简单,编程控制也比较方便。与传统的模拟信号发生器相比,频率精度高,相位精确可控,从而改善了探伤效果,便于整套设备的数字化控制和操作,并减小了设备的体积和重量。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    453

    文章

    50379

    浏览量

    421710
  • 单片机
    +关注

    关注

    6032

    文章

    44513

    浏览量

    632812
  • DDS
    DDS
    +关注

    关注

    21

    文章

    631

    浏览量

    152535
收藏 人收藏

    评论

    相关推荐

    基于51单片机超声波测距系统

    250CM之间。误差:1%。距离显示:用三位LED数码管进行显示(单位是CM)。该接收电路结构简单,性能较好。 硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和
    发表于 03-25 10:21

    基于SLH89F5162的单片机超声波测距器设计

    方案标题:基于SLH89F5162的单片机超声波测距器设计方案概述:本设计旨在设计一种一种基于单片机实时语音播报,带有LED数码显示功能的脉
    发表于 10-18 14:16

    超声波单片机超声波单片机超声波单片机超声波单片机超声波单片机超声波

    单片机超声波单片机超声波单片机超声波单片机
    发表于 04-14 23:51

    基于时差测距的超声波测距系统的软硬件设计

    信息学院摘要超声波测距技术在当今社会生活中已有很广泛的应用,本报告在了解超声波测距原理的基础上,完成了基于时差测距原理的一种超声波测距系统的软硬件
    发表于 07-20 06:18

    基于单片机超声波测距系统实现

    文章目录1 简介2 主要器件3 实现效果4 设计原理4.1 声波雷达原理5 部分实现代码6 最后1 简介Hi,大家好,这里是丹成学长,今天向大家介绍一个学长做的单片机项目基于
    发表于 11-10 08:53

    锁相环频率合成器-ad9850激励

    ad9850激励的锁相环频率合成器山东省济南市M0P44 部队Q04::00R 司朝良摘要! 提出了一种ad9850ad9850相结合的频率合成
    发表于 07-17 22:44 4次下载

    基于单片机超声波汽车报警系统的设计

    介绍了一种基于单片机超声波结合的倒车报警系统的设计过程,本系统采用NE555和CX20106A构建超声波发射与接收电路,通过
    发表于 06-09 16:41 145次下载
    基于<b class='flag-5'>单片机</b>的<b class='flag-5'>超声波</b>汽车报警<b class='flag-5'>系统</b>的设计

    基于单片机超声波测距系统设计

    基于单片机超声波测距系统设计
    发表于 12-17 21:59 6次下载

    基于单片机超声波测距仪设计与实现

    由于超声波的指向性强,能量消耗缓慢,在介质中转播的距离较远,因而超声波经常用于距离的测量,如测距仪和物体位置测量仪等都可以通过超声波实现。该系统
    发表于 01-14 01:10 11次下载

    STM32单片机的高精度超声波测距系统设计

    STM32单片机的高精度超声波测距系统的设计主要由STM32单片机超声波发射电路、接受电路、补偿电路和软件等构成。该
    的头像 发表于 10-17 15:10 8338次阅读

    基于51单片机超声波测距模块设计

    超声波测距的模块,51单片机接上12864液晶,HC-SR04超声波模块,就可以了,具体程序没怎么看,超声波模块的硬件也不晓得。
    发表于 12-10 16:33 6938次阅读

    8051单片机超声波传感器制作的超声波测距仪

     在本文中,单片机开发工程师们使用了8051单片机超声波传感器制作了一个超声波测距仪。我们知道,有很多种方法可以用来测量距离。该方案制作的
    发表于 06-29 10:45 3583次阅读

    51单片机驱动超声波测距模块

    51单片机驱动超声波测距模块(单片机最小系统)-使用51单片机驱动超声波模块SFR05进行测距,
    发表于 07-22 10:01 61次下载
    51<b class='flag-5'>单片机</b>驱动<b class='flag-5'>超声波</b>测距模块

    基于单片机超声波测距

    设计简介:本设计是基于单片机超声波测距系统,主要实现以下功能:可通过LCD1602显示温度、距离和最小距离; 可通过按键设置最小距离; 可通过蜂鸣器和LED进行不同频率的声光报警;标
    发表于 11-12 15:06 41次下载
    基于<b class='flag-5'>单片机</b>的<b class='flag-5'>超声波</b>测距

    如何利用51单片机实现一种超声波测距功能呢

    利用51单片机实现超声波测距功能,利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时
    发表于 08-17 18:04 3003次阅读
    如何利用51<b class='flag-5'>单片机</b><b class='flag-5'>实现</b>一种<b class='flag-5'>超声波</b>测距功能呢