0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于量子力学的量子精密测量技术

MEMS 来源:科技日报 作者:科技日报 2021-02-23 11:08 次阅读

在经典力学里,物体的状态可以被精确测量,并且观察和测量对观察对象的干扰可以忽略不计,但在微观世界,干扰是无论如何都不能忽略的。对量子进行测量,就会发现测量的结果完全随机,得到的结果永远不同。

在量子物理学中,某些东西从严格意义上说是不可知的。例如,你永远不可能同时知道电子的位置和动量,在硬币落下之前,你也不知道哪个面会朝上。在测量之前,电子的位置、动量等状态,是各种可能状态的叠加;在硬币落地静止之前,它的状态是“正面朝上”和“背面朝上”两种状态的叠加,仅当测量时,它才会选择一种确定的状态呈现出来。

在测量的过程中瞬间发生随机突变,是量子力学中一大神奇之处,这也意味着,测量在量子力学中的重要性,比在经典力学中重要得多。

世界上最精密的测量仪器当属激光干涉仪引力波天文台(LIGO),人类利用它首次观测到了引力波事件,代表了人类当前最高的测量水平。为了进一步提高测量精度,科学家们不约而同地把目光聚向基于量子力学的量子精密测量技术。这是一种怎样的技术呢?

经典测量——你测或者不测,我都不增不减

新冠疫情出现后,一个人体指标受到前所未有的关注,那就是体温,对于人体温度的测量就是一种物理量测量。

没有测量就没有科学。现代科学是在“假设—检验—模型—理论”的循环过程中建立和发展起来的。把测量精度提高一个数量级往往会导致新的物理发现。物理量单位的定义、测量值的精度、物理常数的大小及制约关系是否成立,成为了检验物理定律的关键。

在经典力学里,物体的状态可以被精确测量,并且观察和测量对观察对象的干扰可以忽略不计,但在微观世界,干扰是无论如何都不能忽略的。

实际上,对任何物理量的测量都会伴随着噪声,这会干扰我们对系统的精确控制。通常认为,经典噪声主要来源于技术缺陷、仪器不理想等因素,随着科学技术的发展,系统的经典噪声大大降低,常常可以忽略不计。

根据数学上的中心极限定理,重复N次(N远大于1)独立的测量,其测量的结果满足正态分布,而其测量的误差就可以达到单次测量的1/公式。因此,测量精度也就提高到单次测量的公式倍。这也就是经典力学框架下的测量极限——散粒噪声极限。

经典测量所能达到的最小噪声即散粒噪声,对应着测量的标准量子极限。1927年,海森堡提出了量子力学中著名的测不准原理,他认为,粒子的位置与动量不可同时被确定,位置测定得越准确,动量的测定就越不准确,反之亦然。

海森堡不确定性原理似乎是遮掩这些可观测量真实数值的一层模糊的面纱。其实,这是表示这些变量只能定义到海森堡极限所允许的精度。量子噪声与经典噪声的区别,在于如热噪声、散粒噪声等都与温度相关——温度越低,噪声越低。当温度达到绝对零度时,经典噪声将完全消失。但是,你却无法消除量子噪声——因为根据量子力学原理,空间中总是充满着波动的能量,整个宇宙中都活跃着量子噪声。

量子测量——既不是1也不是2,既是1又是2

量子理论在揭示和应用微观世界规律方面取得了巨大成功,这也被称为第一次量子革命,由此衍生的诸多重大发明,主要是建立在对量子规律宏观体现的应用层面。

随着科学家们对量子叠加和量子纠缠等特性进行深入研究,人类已经能够直接对单个量子客体(光子、原子、分子、电子等)的状态进行主动制备、精确操纵和测量,从而能够以一种全新的“自下而上”的方式来利用量子规律认识和改造世界。量子调控和量子信息技术的迅猛发展标志着第二次量子革命的兴起。

我们要认识和了解量子,就必须知道量子物理状态,比如它是如何运动的,能量有多大等。如果对量子进行测量,就会发现测量的结果是完全随机的。这是因为,量子有着许多不同于宏观物理世界的奇妙现象和特性,比如量子叠加。

“在我们生活的宏观世界里,量子叠加现象是无法存在也无法维持的。在宏观的经典世界里,1就是1,2就是2。而在微观的量子世界中,一个状态可以存在于1和2之间,它既不是1,也不是2,但它既是1,又是2。”中国科学技术大学上海研究院副研究员张文卓说。

“这就好比孙悟空的分身术。一个孙悟空可以同时出现在多个地方,孙悟空的各个分身就像是它的叠加态。”中科院院士、中国科学技术大学教授潘建伟解释道,“在日常生活中,一个人不可能同时出现在两个地方。但在量子世界里,作为一个微观的客体,它能够同时出现在许多地方。”

宏观经典世界遵照的是经典力学规律,而在量子世界中,遵照的则是量子力学规律。在量子力学里,光子(量子的一种)可以朝着某个方向进行振动,叫做偏振。因为量子叠加,一个光子可以同时处在水平偏振和垂直偏振两个量子状态的叠加态。科学实验证明,因为量子叠加效应的存在,一经测量就会破坏或改变量子的状态。因此,如果拿一个仪器对量子进行测量,就会发现测量的结果完全随机,对于相同状态,无论观察得多仔细,得到的结果永远不同。

三把“尺子”——量子特性让测量精度不断提高

由于量子力学测不准原理的限制,测量精度不可能无限制地提高,这个最终的极限被称为海森堡极限。

但是,人们可以通过两种方式来提高测量精度:第一种是制备和利用分辨率更高的“尺子”;第二种方式是通过多次重复测量减少测量误差,提高测量精度。近年来,人们发现利用量子力学的基本属性,例如量子相干、量子纠缠、量子统计等特性,可以实现突破经典散粒噪声极限限制的高精度测量,这就相当于找到了一把高灵敏度的量子“尺子”。

按照对量子特性的应用,量子测量也有了三把“尺子”,第一把“尺子”是基于微观粒子能级测量;第二把“尺子”是基于量子相干性测量;第三把“尺子”是基于量子纠缠进行测量。

第一把“尺子”从上世纪50年代就逐步在原子钟等领域开始应用。根据玻尔的原子理论,原子从一个“能量态”跃迁至低的“能量态”时便会释放电磁波。这种电磁波特征频率是不连续的,这也就是人们所说的共振频率。

1967年,国际计量大会依据铯原子的振动而对秒做出了重新定义,即铯133原子基态的两个超精细能阶间跃迁对应辐射的9192631770个周期的持续时间。这是量子理论在测量问题上的第一个重大贡献。

量子测量第二把“尺子”是基于量子相干性的测量技术,利用量子的物质波特性,通过干涉法进行外部物理量的测量。现在已经广泛应用于陀螺仪、重力仪、重力梯度仪等领域。例如,冷原子干涉量子陀螺仪由于其超高精度和超高分辨率的优异特性,可以应用于高灵敏导航系统等。

量子测量的最后一把“尺子”——基于量子纠缠的测量技术。理论上,如果让N个量子“尺子”的量子态处于一种纠缠态上,外界环境对这N个量子“尺子”的作用将相干叠加,使得最终的测量精度达到单个量子“尺”的1/N。该精度突破了经典力学的散粒噪声极限,是量子力学理论范畴内所能达到的最高精度——海森堡极限。

2018年,中国科大郭光灿院士领导的研究组首次在国际上逼近了最优海森堡极限。而就在2021年1月,郭光灿院士领导的研究组同时实现了三个参数达到海森堡极限精度的测量。目前,科学家们已经在光子、离子阱和超导等物理系统中实现了对相位测量等物理量测量的实验演示,突破了经典测量极限,逼近或达到海森堡极限。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子
    +关注

    关注

    0

    文章

    477

    浏览量

    25471
  • 测量
    +关注

    关注

    10

    文章

    4754

    浏览量

    111098
  • 测量仪器
    +关注

    关注

    3

    文章

    779

    浏览量

    42089

原文标题:永远测不准的量子,推动测量精度走向极限

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    华为公开量子计算新专利

    近日,华为公司公开了一项名为“一种量子计算方法、装置、存储介质以及芯片系统”的专利,其公开号为CN118780379A。 该专利深入探索了量子计算的前沿领域。量子计算,作为一种利用量子力学
    的头像 发表于 10-27 10:00 262次阅读

    量子光通信的概念和原理

    量子光通信,作为量子通信领域的一个重要分支,是一种利用量子光学原理和量子力学特性进行信息传递的先进技术。它不仅继承了光通信的高速、大容量优势
    的头像 发表于 08-09 14:22 758次阅读

    【《计算》阅读体验】量子计算

    测量前可能处于叠加态,这是量子力学既令人难以理解又威力无穷的地方。由于量子具有波粒二象性,因此可以把量子描述为一个波函数,测量前处于看加态的
    发表于 07-13 22:15

    量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    首先感谢发烧友提供的试读机会。 略读一周,感触颇深。首先量子计算机作为一种前沿技术,正逐步展现出其巨大的潜力,预示着未来社会和技术领域的深刻变革。下面,我将从几个方面探讨量子计算机如
    发表于 03-13 19:28

    量子

    可以模拟原子和分子之间的相互作用,帮助科学家设计新材料、药物,甚至加速新材料的发现过程。这将有助于推动科学研究的进展,加快新技术的开发。 总的来说,量子计算机的梦想是通过利用量子力学的奇特性质,解决传统
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    ,发现只要是涉及量子计算机原理方面的资料,其中提及最多的就是量子叠加,直接忽视专业级大神的那些不太友好的解释,只看科普性的解释:量子叠加原理是量子力学的基本原理之一;
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+机器学习的终点是量子计算?

    量子力学,不过最近抽空正在脑补,薛定谔方程,费曼的路径积分,还有矩阵力学,等等,这块涉及的数学有点多,李群和李代数等,拓扑流形,复线性代数等。。 不说了,说起来都是痛。 为了能够更快的熟悉这些内容
    发表于 03-10 16:33

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    ,就相当于调整输出的手指朝向。而这个计算方法,刚好就是量子力学中的量子纠缠。而量子纠缠,就有可能将之前计算很麻烦的问题进行简单计算,从而达到提速的目的。 作者介绍了量子计算机目前的两大
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算机

    感觉量子技术神奇神秘,希望通过阅读此书来认识量子计算机。 先浏览一下目录: 通过目录,基本可以确定这是一本关于量子计算机的科普书籍,主要包括什么是
    发表于 03-05 17:37

    量子计算机 未来希望

    自己从事语音识别产品设计开发,而量子技术量子计算机必将在自然语言处理方面实现重大突破,想通过此书学习量子计算技术,储备知识,谢谢!
    发表于 02-01 12:51

    微型量子存储元件的量产之路

    光子特别适合传输量子信息。光子可用于通过光缆向卫星或量子存储元件发送量子信息。但光子的量子力学状态必须是尽可能精确地存储,并经过一定时间后再转换回光子。
    的头像 发表于 01-22 14:42 455次阅读

    量子力学三大定律公式

    量子力学是描述微观世界的物理理论,为了描述微观粒子的行为,量子力学提出了三个重要的定律。这三个定律是量子力学的基石,构建了整个理论体系。本文将详细介绍量子力学的三大定律:波函数定律、不
    的头像 发表于 01-15 09:44 3717次阅读

    量子力学测量关系研究国际会议准备会议在广州举行

    12月19-21日中关村检验检测认证产业技术联盟国际专委会在广州组织召开了“量子力学测量关系研究国际会议”准备会议。来自全国14个国防和各省市计量技术机构6个
    的头像 发表于 12-22 08:24 575次阅读
    <b class='flag-5'>量子力学</b>和<b class='flag-5'>测量</b>关系研究国际会议准备会议在广州举行

    阐述量子信息技术的研究现状与未来

    20世纪 80 年代, 科学家将量子力学应用到信息领域, 从而诞生了量子信息技术, 诸如量子计算机、量子密码、
    发表于 11-22 11:40 775次阅读
    阐述<b class='flag-5'>量子</b>信息<b class='flag-5'>技术</b>的研究现状与未来

    量子芯片究竟强大在何处?

    据了解,量子芯片是利用量子力学原理实现信息的存储、处理和计算,其最核心的是量子比特。相比传统的比特只能存储0或1两种状态,量子比特可以同时处于0和1这两种状态的叠加态,这使得
    的头像 发表于 11-20 14:42 1453次阅读
    <b class='flag-5'>量子</b>芯片究竟强大在何处?