0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2021年十个值得关注的数据分析趋势

如意 来源:云头条 作者:佚名 2021-02-26 15:38 次阅读

AI到小数据和图形技术,数据和分析领导者应考虑充分利用这些趋势。

一些组织使用严重依赖大量历史数据的传统分析技术,新冠疫情袭来时,这些组织意识到了一件重要的事情:许多这些数据模型不再适用。实际上,新冠疫情改变了一切,导致许多数据毫无用处。

反过来,高瞻远瞩的数据团队和分析团队顺势而变:之前采用依赖“大”数据的传统AI技术,现在改而采用一类需要较少量但更多样化的“小”数据的分析技术。

Gartner列出了2021年数据和分析领域的十大趋势,从大数据向小而广数据转变是其中之一。这些趋势代表着商业、市场和技术方面的动态,数据和分析领导者不可忽视。

Gartner杰出副总裁分析师Rita Sallam说:“数据和分析领域的这些趋势可以帮助组织和社会应对颠覆性变化、巨大的不确定性以及它们在今后三年带来的机遇。数据和分析领导者须积极研究如何充分利用这些趋势,做出与时俱进的重要投入,以提升预测、转变和响应的能力。”

每一个趋势都符合以下三大主题之一:

1、数据和分析方面的变化加快:充分利用AI方面的创新、增强的可组合性以及更灵活更有效地集成更迥然不同的数据源。

2、通过更有效的XOps切实发挥业务价值:支持更有效的决策,并支持将数据和分析变成业务不可或缺的一部分。

3、分发一切:需要灵活地关联数据和洞察力,以支持更广泛的人和物件。

第1个趋势:更智能化、更负责任、更灵活扩展的AI

更智能化、更负责任、更灵活扩展的AI将带来更好的学习算法、可解释的系统和实现价值的更短时间。组织将开始对AI系统提出多得多的要求,它们需要弄清楚如何扩展技术——到目前为止,这仍是一大挑战。

虽然传统的AI技术可能严重依赖历史数据,但鉴于新冠疫情已改变了商业格局,历史数据可能不再适用。这意味着AI技术必须能够通过“小数据”技术和自适应机器学习,以更少的数据进行运作。这些AI系统还必须保护隐私、遵守联邦法规并尽量减少偏差,以支持道德AI。

第2个趋势:可组合式数据和分析

可组合式数据和分析的目的是使用来自多个数据、分析和AI解决方案的组件,以获得一种灵活、对用户友好和易用的体验,从而使领导者能够将数据洞察力与业务活动联系起来。Gartner收到的客户咨询表明,大多数大组织拥有不止一种“企业标准”分析和商业智能工具。

利用各自的套装业务功能组合新应用程序可提高生产力和敏捷性。可组合式数据和分析不仅有助于协作、完善组织的分析功能,还会加大分析技术的普及程度。

第3个趋势:数据结构充当基础

随着数据变得日益复杂、数字化业务加快发展,数据结构(data fabric)成为支持可组合式数据和分析及各种组件的体系结构。

数据结构将集成设计时间缩短了30%,将部署时间缩短了30%,将维护时间缩短了70%,原因是这种技术设计运用了使用/重用和结合不同数据集成方式的能力。此外,数据结构可以充分利用来自数据枢纽、数据湖和数据仓库的现有技能和技术,同时又引入适应未来的新方法和工具。

第4个趋势:从大数据到小而广数据

许多组织在处理AI方面日益复杂的问题以及数据使用场景寥寥无几的挑战,与大数据相反,小而广数据为这些组织解决了许多问题。广数据充分利用“X分析”技术,支持分析众多小而多样化(广)数据源、非结构化数据源和结构化数据源,并实现协同效应,以增强上下文意识和决策。顾名思义,小数据能够使用需要较少数据,但仍提供实用洞察力的数据模型。

第5个趋势:XOps

XOps(数据、机器学习、模型和平台)的目的是,使用DevOps最佳实践来获得效率和规模经济效益,并确保可靠性、可重用性和可重复性,同时减少技术和流程的重复,并实现自动化。

这些技术将能够扩展原型,并提供受控决策系统的灵活设计和敏捷编排。总体而言,XOps将使组织能够实际运用数据和分析技术以提高业务价值。

第6个趋势:集成的决策智能

决策智能是一门学科,涵盖一系列广泛的决策,其中包括常规的分析、AI和复杂的自适应系统应用软件。集成决策智能不仅适用于单个决策,还适用于一系列决策,可以将它们分组为业务流程,甚至新兴决策网络

这使组织能够更快地获得促使公司采取行动所需要的洞察力。如果结合可组合性和通用数据结构,集成的决策智能带来了新的机会,以便组织重新思考或重新设计如何优化决策,并使决策更准确、可重复和可追溯。

第7个趋势:数据和分析是一项核心业务职能

业务领导者开始认识到使用数据和分析技术来加快数字化业务计划的重要性。数据和分析不再是不同团队完成的次要工作,而是转而成为一项核心职能。然而,业务领导者常常低估了数据的复杂性,因而最终错失了机会。如果首席数据官(CDO)参与制定目标和策略,他们可以将源源不断获取的业务价值提高2.6倍。

第8个趋势:图形关乎一切

图形构成了现代数据和分析的基础,能够增强和改善用户协作、机器学习模型和可解释型AI。虽然图形技术不是数据和分析领域的新技术,但随着组织识别越来越多的使用场景,围绕它们的观念已发生了转变。实际上,关于AI话题的Gartner客户咨询当中多达50%都离不开讨论图形技术的使用。

第9个趋势:增强型消费者的崛起

在过去,业务用户囿于预定义的仪表板和手动探索数据。这常常意味着数据和分析仪表板仅限于数据分析员或平民数据科学家探究预定义的问题。

然而Gartner认为,展望将来,这些仪表板将被自动化、对话式、移动、动态生成的洞察力取而代之,这种洞察力可根据用户的需求进行定制,并交付到用户的消费点。这将洞察力知识从一小撮数据专家的手里转移到组织中任何人的手里。

第10个趋势:边缘端数据和分析

随着更多的数据分析技术开始出现在传统数据中心和云环境之外的环境,它们更靠近实体资产。这缩短或消除了以数据为中心的解决方案的延迟,并支持获得更大的实时价值。

将数据和分析技术转移到边缘将为数据团队带来机会,以扩大功能,并将影响扩展到公司的不同部门。这还可以为因法律或法规原因而无法从特定地理位置删除数据的情况提供解决方案。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7067

    浏览量

    89127
  • 数据分析
    +关注

    关注

    2

    文章

    1451

    浏览量

    34071
  • 大数据
    +关注

    关注

    64

    文章

    8894

    浏览量

    137495
收藏 人收藏

    评论

    相关推荐

    2023度《中国公路货运运行大数据分析报告》发布

    伴随新一轮科技革命和产业变革加速演进,公路货运行业也正处于产业升级、结构调整、转型重构的总体发展阶段。在此趋势下,中交兴路联合长安大学等院校和机构,对公路货运行业的运行态势和变化特点持续关注分析,迄今已连续六
    的头像 发表于 12-29 16:31 358次阅读
    2023<b class='flag-5'>年</b>度《中国公路货运运行大<b class='flag-5'>数据分析</b>报告》发布

    绝缘电阻测试仪数据分析与处理

    绝缘电阻测试仪主要用于检查电气设备或电气线路对地及相间的绝缘电阻。将所测得的结果与有关数据比较,这是对实验结果进行分析判断的重要方法。以下是对绝缘电阻测试仪的数据分析与处理方法的介绍: 一、
    的头像 发表于 12-10 15:00 299次阅读

    数据可视化与数据分析的关系

    在当今这个信息爆炸的时代,数据无处不在。无论是企业运营、科学研究还是个人决策,我们都需要从海量的数据中提取有价值的信息。数据分析数据可视化作为两
    的头像 发表于 12-06 17:09 351次阅读

    eda与传统数据分析的区别

    进行初步的探索和理解,发现数据中潜在的模式、关系、异常值等,为后续的分析和建模提供线索和基础。 方法论 :EDA强调数据的真实分布和可视化,使用多种图表和可视化工具来展示数据的特征和
    的头像 发表于 11-13 10:52 347次阅读

    为什么选择eda进行数据分析

    数据科学领域,数据分析是一复杂且多步骤的过程,它涉及到数据的收集、清洗、探索、建模和解释。在这些步骤中,探索性数据分析(EDA)扮演着至
    的头像 发表于 11-13 10:41 252次阅读

    raid 在大数据分析中的应用

    RAID(Redundant Array of Independent Disks,独立磁盘冗余阵列)在大数据分析中的应用主要体现在提高存储系统的性能、可靠性和容量上。以下是RAID在大数据分析
    的头像 发表于 11-12 09:44 255次阅读

    数据分析在数字化中的作用

    与重要性 数据分析是指使用统计和逻辑方法对数据进行处理和解释的过程。它涉及到数据的收集、清洗、转换、建模和解释,目的是发现数据中的模式、趋势
    的头像 发表于 10-27 17:35 588次阅读

    IP 地址大数据分析如何进行网络优化?

    一、大数据分析在网络优化中的作用 1.流量分析数据分析可以对网络中的流量进行实时监测和分析,了解网络的使用情况和流量趋势。通过对流量
    的头像 发表于 10-09 15:32 246次阅读
    IP 地址大<b class='flag-5'>数据分析</b>如何进行网络优化?

    数据分析除了spss还有什么

    数据分析是当今世界中一非常重要的领域,它涉及到从大量数据中提取有用信息、发现模式和趋势,并为决策提供支持。SPSS(Statistical Package for the Socia
    的头像 发表于 07-05 15:01 643次阅读

    数据分析的工具有哪些

    数据分析是一涉及收集、处理、分析和解释数据以得出有意义见解的过程。在这个过程中,使用正确的工具至关重要。以下是一些主要的数据分析工具,以及
    的头像 发表于 07-05 14:54 882次阅读

    数据分析有哪些分析方法

    数据分析是一种重要的技能,它可以帮助我们从大量的数据中提取有价值的信息,从而做出更明智的决策。在这篇文章中,我们将介绍数据分析的各种方法,包括描述性分析、诊断性
    的头像 发表于 07-05 14:51 616次阅读

    机器学习在数据分析中的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的
    的头像 发表于 07-02 11:22 648次阅读

    具有十个解码输出的进位计数器/除法器数据

    电子发烧友网站提供《具有十个解码输出的进位计数器/除法器数据表.pdf》资料免费下载
    发表于 05-17 10:47 0次下载
    具有<b class='flag-5'>十个</b>解码输出的<b class='flag-5'>十</b>进位计数器/除法器<b class='flag-5'>数据</b>表

    求助,关于AD采集到的数据分析问题

    问题描述:使用AD采集一10Hz到2MHz的脉冲,脉冲底部可能大于零,由采集到的数据分析出该脉冲的上升时间,幅值和占空比。 备注:在分析的时候已经知道脉冲的频率,精度为2X10^-5. 在
    发表于 05-09 07:40

    BI数据分析软件:行业趋势与功能特点剖析

    随着数据量的爆炸性增长,企业对于数据的需求也日益迫切。BI数据分析软件作为帮助企业实现数据驱动决策的关键工具,在当前的商业环境中扮演着不可或缺的角色。
    的头像 发表于 04-11 16:10 479次阅读
    BI<b class='flag-5'>数据分析</b>软件:行业<b class='flag-5'>趋势</b>与功能特点剖析