0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习中又快又准的模拟方法

ExMh_zhishexues 来源:知社学术圈 作者:知社学术圈 2021-02-26 17:29 次阅读

相场方法是一种流行的介观尺度计算方法,用于研究微结构及其物理性质的时空演化。它已被广泛用于描述各种重要的介观尺度演化现象,包括晶粒生长和粗化、凝固、薄膜沉积、位错动力学、生物膜中的囊泡形成和裂纹传播。现有的高保真相场模型实际计算成本很高,因为它们需要解决一组描述这些过程的连续场变量的耦合偏微分方程系统。

目前,最大限度地降低计算成本的探索主要集中在利用高性能计算架构和先进的数值方案,或将机器学习算法与微观结构模拟相结合。然而,对于这些成功的解决方案来说,如何平衡精度与计算效率也还是个令人头痛的问题。要么计算效率高就不能保证得到精确解;要么可以求解复杂的、耦合的相场方程,却计算成本高昂;要么能够预测训练范围之内的微观结构演化,却预测不了训练之外的演化。

来自美国桑迪亚国家实验室集成纳米技术中心的Rémi Dingreville教授领导的团队,开发了一个机器学习框架来高效、快速地预测复杂的微结构演化问题。通过采用长短期记忆(LSTM)神经网络学习长期模式和解决历史依赖性问题,作者将微结构演化问题重新表述为多变量时间序列问题。在这种情况下,神经网络能学习如何通过微结构随时间演化的低维描述来预测微结构的演化。

他们发现这种机器学习的替代模型,可以在几分之一秒的时间内预测两相混合物在亚稳态分解时的非线性微观结构演化,与高保真相场模拟相比,准确性仅损失5%。作者表明,该替代模型轨迹作为经典高保真相场模型的输入数据时,可以加速相场模拟。作者的解决方案开辟了一条很有前途的道路,在尺度现象至关重要的问题中(如材料设计等演化问题),可利用他们加速的相场模拟来发现、求解和预测加工-微结构-性能关系。 该文近期发表于npj Computational Materials7:3(2021),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。

148c0382-7739-11eb-8b86-12bb97331649.jpg

原文标题:npj: 机器学习带着相场走来了—又快又准的模拟方法

文章出处:【微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100889
  • 机器学习
    +关注

    关注

    66

    文章

    8424

    浏览量

    132764

原文标题:npj: 机器学习带着相场走来了—又快又准的模拟方法

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    传统机器学习方法和应用指导

    在上一篇文章,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统
    的头像 发表于 12-30 09:16 249次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习方法</b>和应用指导

    什么是机器学习?通过机器学习方法能解决哪些问题?

    计算机系统自身的性能”。事实上,由于“经验”在计算机系统主要以数据的形式存在,因此机器学习需要设法对数据进行分析学习,这就使得它逐渐成为智能数据分析技术的创新源之一,
    的头像 发表于 11-16 01:07 447次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习方法</b>能解决哪些问题?

    eda在机器学习的应用

    机器学习项目中,数据预处理和理解是成功构建模型的关键。探索性数据分析(EDA)是这一过程不可或缺的一部分。 1. 数据清洗 数据清洗 是机器学习
    的头像 发表于 11-13 10:42 326次阅读

    机器学习的数据分割方法

    机器学习,数据分割是一项至关重要的任务,它直接影响到模型的训练效果、泛化能力以及最终的性能评估。本文将从多个方面详细探讨机器学习
    的头像 发表于 07-10 16:10 1920次阅读

    机器学习的交叉验证方法

    机器学习,交叉验证(Cross-Validation)是一种重要的评估方法,它通过将数据集分割成多个部分来评估模型的性能,从而避免过拟合或欠拟合问题,并帮助选择最优的超参数。本文将
    的头像 发表于 07-10 16:08 1244次阅读

    如何理解机器学习的训练集、验证集和测试集

    理解机器学习的训练集、验证集和测试集,是掌握机器学习核心概念和流程的重要一步。这三者不仅构成了模型学习
    的头像 发表于 07-10 15:45 4341次阅读

    机器学习的数据预处理与特征工程

    机器学习的整个流程,数据预处理与特征工程是两个至关重要的步骤。它们直接决定了模型的输入质量,进而影响模型的训练效果和泛化能力。本文将从数据预处理和特征工程的基本概念出发,详细探讨这两个步骤的具体内容、
    的头像 发表于 07-09 15:57 486次阅读

    深度学习的时间序列分类方法

    的发展,基于深度学习的TSC方法逐渐展现出其强大的自动特征提取和分类能力。本文将从多个角度对深度学习在时间序列分类的应用进行综述,探讨常用的深度
    的头像 发表于 07-09 15:54 1028次阅读

    深度学习的无监督学习方法综述

    应用往往难以实现。因此,无监督学习在深度学习扮演着越来越重要的角色。本文旨在综述深度学习
    的头像 发表于 07-09 10:50 818次阅读

    深度学习在工业机器视觉检测的应用

    随着深度学习技术的快速发展,其在工业机器视觉检测的应用日益广泛,并展现出巨大的潜力。工业机器视觉检测是工业自动化领域的重要组成部分,通过图像处理和计算机视觉技术,实现对产品表面缺陷、
    的头像 发表于 07-08 10:40 1106次阅读

    机器人视觉技术图像分割方法有哪些

    机器人视觉技术是人工智能领域的一个重要分支,它涉及到图像处理、模式识别、机器学习等多个学科。图像分割是机器人视觉技术的一个重要环节,它的目
    的头像 发表于 07-04 11:34 1043次阅读

    机器学习在数据分析的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的数据分析能力。本文将深入探讨机器
    的头像 发表于 07-02 11:22 654次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于
    的头像 发表于 07-01 11:40 1429次阅读

    机器学习8大调参技巧

    今天给大家一篇关于机器学习调参技巧的文章。超参数调优是机器学习例程的基本步骤之一。该方法也称为
    的头像 发表于 03-23 08:26 641次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>8大调参技巧

    良品学习在高良率制造业缺陷检测的应用

    电子制造行业正逐步迈向高度“数智化”时代,越来越多的企业开始采用AI机器视觉技术进行缺陷检测和品质管控。由于良品率极高,在大量正常的产品,收集缺陷样本既耗时低效。而模拟制造缺陷品也
    的头像 发表于 01-26 08:25 774次阅读
    良品<b class='flag-5'>学习</b>在高良率制造业<b class='flag-5'>中</b>缺陷检测的应用