0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

4篇建议收藏的图神经网络综述论文

深度学习自然语言处理 来源:图与推荐 作者:图与推荐 2021-03-08 10:24 次阅读

本文主要介绍了2021年最新的图神经网络综述,是入坑的最佳材料。

图神经网络已经成为深度学习领域最炙手可热的方向之一了,也是各大互联网公司非常欢迎的方向。

本文来自图挖掘大牛Philip S. Yu老师和在异质图领域深耕的北邮Chuan Shi教授。一作Xiao Wang是图挖掘的Rising Star。图神经网络大部分的研究是针对简单同质图设计的。然后,在工业实际场景下,数据往往更加复杂,是包含多种类型节点和边的异质图。例如,电商推荐实际是预测用户-商品之间的边。因此,异质图神经网络更具有实际经济价值。

本文分类梳理了异质图神经网络及表示学习最新的进展,包括模型,应用及相关的资源(数据&代码)。非常值得一看~

b411830c-7f2a-11eb-8b86-12bb97331649.jpg

b454f966-7f2a-11eb-8b86-12bb97331649.jpg

本文来自图挖掘大牛Philip S. Yu老师和学术新秀 Shirui Pan,主要介绍了图上自监督学习的最新进展。自监督学习这1,2年非常火,当然也免不了蔓延到图神经网络领域。例如,图神经网络预训练模型基本都是采用自监督训练的。

image-20210302115026004

image-20210302115128408

b520a458-7f2a-11eb-8b86-12bb97331649.jpg

图神经网络与元学习结合的相关模型及应用。图神经网络经过这几年的发展,已经逐渐进入了深水区。一些研究者便将其与多种传统技术如元学习结合,弯道超车,也发了一些顶会论文。

本文来自清华大学朱文武团队。与传统深度学习算法类似,图深度学习(包括图表示学习和图神经网络)也不可避免的需要调整大量超参数。AutoML可以实现自动超参数搜索,本文则是集中梳理了图上的自动机器学习技术。

b6ceea4e-7f2a-11eb-8b86-12bb97331649.jpg

原文标题:【2021最新】4篇图神经网络综述论文,建议收藏!

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4789

    浏览量

    101596
  • 人工智能
    +关注

    关注

    1800

    文章

    48083

    浏览量

    242145

原文标题:【2021最新】4篇图神经网络综述论文,建议收藏!

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    BP神经网络的调参技巧与建议

    BP神经网络的调参是一个复杂且关键的过程,涉及多个超参数的优化和调整。以下是一些主要的调参技巧与建议: 一、学习率(Learning Rate) 重要性 :学习率是BP神经网络中最重要的超参数之一
    的头像 发表于 02-12 16:38 201次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 172次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 542次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 1012次阅读

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1857次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 1572次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 738次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 1034次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1614次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 1208次阅读

    卷积神经网络与循环神经网络的区别

    在深度学习领域,卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN)是两种极其重要
    的头像 发表于 07-03 16:12 4130次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小化误差的
    的头像 发表于 07-03 11:00 957次阅读

    bp神经网络是深度神经网络

    BP神经网络(Backpropagation Neural Network)是一种常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络在某些方面与深度
    的头像 发表于 07-03 10:14 1032次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1558次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 5121次阅读