0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

智源联合清华发布首个支持PyTorch框架的高性能MoE系统

智能感知与物联网技术研究所 来源:智源研究院 作者:智源研究院 2021-03-10 14:02 次阅读

北京智源人工智能研究院(以下简称“智源研究院”)和清华大学联合发布首个支持 PyTorch 框架的高性能 MoE 系统:FastMoE 。

FastMoE 系统具有易用性强、灵活性好、训练速度快的优势,打破行业限制,可在不同规模的计算机或集群上支持研究者探索不同的 MoE 模型在不同领域的应用。相比直接使用 PyTorch 实现的版本,提速 47 倍。FastMoE 是智源研究院于 2020 年发起的新型超大规模预训练模型研发项目“悟道”的最新成果,由“悟道文汇”(面向认知的超大规模新型预训练模型)和“悟道文溯”(超大规模蛋白质序列预训练模型)两个研究小组联合完成。

MoE 是什么?万亿模型的核心技术,推动预训练模型跨越式发展,却令 GPU 与 PyTorch 用户望而却步。

MoE(Mixture of Experts)是一个在神经网络中引入若干专家网络(Expert Network)的技术,也是 Google 最近发布的 1.5 万亿参数预训练模型 Switch Transformer 的核心技术。它对于预训练模型经从亿级参数到万亿级参数的跨越,起了重要推动作用。然而由于其对 Google 分布式训练框架 mesh-tensorflow 和 Google 定制硬件 TPU 的依赖,给学术界和开源社区的使用与研究带来了不便。

MoE 设计:显著增加模型参数量

ICLR 2017 上,Google 研究者提出了 MoE(Mixture of Experts)层。该层包含一个门网络(Gating Network)和 n 个专家网络(Expert Network)。对于每一个输入,动态地由门网络选择 k 个专家网络进行激活。在图 1 的例子中,门网络决定激活第 2 个专家网络和第 n-1 个专家网络。

图 1:MoE 层的设计(图片来源 https://arxiv.org/pdf/1701.06538.pdfFigure 1)

在具体设计中,每个输入 x 激活的专家网络数量 k 往往是一个非常小的数字。比如在 MoE 论文的一些实验中,作者采用了 n=512,k=2 的设定,也就是每次只会从 512 个专家网络中挑选两个来激活。在模型运算量(FLOPs)基本不变的情况下,可以显著增加模型的参数量。

GShard 和 Switch Transformer,达到惊人的 1.5 万亿参数量级

ICLR 2021 上,Google 的进一步将 MoE 应用到了基于 Transformer 的神经机器翻译的任务上。GShard 将 Transformer 中的 Feedforward Network(FFN)层替换成了 MoE 层,并且将 MoE 层和数据并行巧妙地结合起来。在数据并行训练时,模型在训练集群中已经被复制了若干份。GShard 通过将每路数据并行的 FFN 看成 MoE 中的一个专家来实现 MoE 层,这样的设计通过在多路数据并行中引入 All-to-All 通信来实现 MoE 的功能。在论文中,Google 使用 2048 个 TPU v3 cores 花 4 天时间训练了一个 6 千亿参数的模型。

9d2de560-80d1-11eb-8b86-12bb97331649.png

图 2:GShard 的设计(图片来源 https://arxiv.org/pdf/2006.16668.pdfFigure 3)

在 2021 年 1 月,Google 进一步发布了万亿规模的基于 MoE 的大规模预训练模型 Switch Transformer。Switch Transformer 用 MoE 改进了 Google 已有的 T5 预训练模型,其中最大的模型 Switch-C 已经达到了 1.5 万亿参数。

MMoE:MoE 的推荐系统应用

除了在自然语言处理中大放异彩之外,MoE 还在推荐系统中找到了一席之地。在 KDD 2018 中,Google 的研究人员提出了 MMoE(Multi-gate Mixture-of-Experts),并将其应用到了 Google 的推荐系统的多任务分类问题中,取得了十分好的效果。随后,Google 在 RecSys 2019 介绍了 MMoE 在 YouTube 视频推荐中的应用。类似的 MMoE 模型也被快手的研究员应用到了快手推荐系统的 1.9 万亿参数的大规模精排模型中。

FastMoE 是首个支持 PyTorch 框架的 MoE 系统,简单,灵活,高性能,支持大规模并行训练

MoE 潜力巨大,但因为绑定 Google 软硬件,无法直接应用于 PyTorch 框架。FastMoE 是首个基于当前最流行的 PyTorch 框架的 MoE 开源系统,使得普通的用户可以使用常见的 GPU 资源来尝试和研究自己的 MoE 模型。与朴素版本相比,实现了 47 倍的提速优化,更加简单、灵活、高效。

特色一:简单易用,一行代码即可 MoE

FastMoE 系统既可以作为 PyTorch 网络中的一个模块使用,也可用于“改造”现有网络中某个层:将其复制多份,并引入 Gate,变为 MoE 层。

例如,对于当前流行的 Megatron-LM 训练系统,仅需要对代码进行如下改动,就可以将 Transformer 模型中的前馈网络(Feed Forward Network)全部替换为 MoE 网络。

特色二:灵活性,支持多种扩展方式

除了传统的两层 MLP 网络,FastMoE 也支持将任意神经网络模块作为专家网络,而进行这样的操作仅需通过修改 MoE 层构造函数中的一个参数即可实现。

此外,专家选择模块 Gate 也有较高的研究价值。FastMoE 系统目前仅提供了基于单层全连接网络的基础版本,但是通过给定接口,研究者可以方便地使用自己编写的深度神经网络模块作为 Gate,从而探索出更好的专家选择方案。

特色三:运行高效,专有性能优化

FastMoE 中包含了一些专门优化的 CUDA 代码。在单块 GPU 上,相对于一个朴素的 PyTorch 实现,FastMoE 的算子更加充分地利用了 GPU 大规模并行计算的能力,从而实现多达 47 倍的加速,从而使得模型研究者可以在更短的时间内验证他们的想法。

FastMoE 支持在同一个 worker 上运行多个 experts,从而减少模型研究者在探索更多 experts 数量时所需的硬件资源。当 experts 数量较多时,FastMoE 针对传统的两层 MLP 全连接网络(即 Transformer 中的 FFN 网络)使用了更精细的并行策略,从而使得 Transformer 模型中 MLP 部分的运算速度相比朴素的实现较大的加速。

图 3:单 GPU 多 experts 情况下,FastMoE 相比普通 PyTorch 实现的加速比。性能的提升主要来自 FastMoE 针对传统的两层 MLP 全连接网络(即 Transformer 中的 FFN 网络)使用了更精细的并行策略。

单 GPU 的 FastMoE 优化配合 PyTorch 的数据并行,已经可以支持少量专家的 MoE 分布式训练,这种训练模式被称为 FastMoE 的数据并行模式。图 4 展示了一个在 2 个 workers(GPU)上对一个由 3 个 experts 构成的 MoE 网络进行前向计算的例子。

图 4:FastMoE 数据并行模式,每个 worker 放置多个 experts,worker 之间数据并行。top-2 gate 指的是门网络会选择激活分数最高的 2 个专家网络。

FastMoE 的数据并行模式已经可以支持许多应用,开发者在著名的 Transformer-XL 模型上进行了实验。具体来说,Transformer-XL 模型中的每一个 FFN 层(两层的带 ReLU 激活函数的 MLP,隐层大小为 512->2048->512)都被一个 64 选 2 的专家网络替代(每个专家网络是两层的带 ReLU 激活函数的 MLP,隐层大小为 512->1024->512)。这样一来,改造后的 FastMoE-Transformer-XL 在模型计算量基本不变的情况下,可以获得原始 Transformer-XL 模型约 20 倍的参数。如图 5 所示,改造后的 FastMoE-Transformer-XL 收敛得比 Transformer-XL 更快。

图 5:FastMoE-Transformer-XL (64 个 experts)在 enwik8 数据集上前 100K 步的 Training Loss,其收敛速度显著快于 Transformer-XL。

特色四:支持大规模并行训练

图 6:FastMoE 模型并行模式,每个 worker 放置多个 experts,worker 之间进行 experts 的模型并行。top-2 gate 指的是门网络会选择激活分数最高的 2 个专家网络。

FastMoE 还支持在多个 worker 间以模型并行的方式进行扩展(如图 6 所示),即不同的 worker 上放置不同的 experts,输入数据在计算前将被传输到所需的 worker 上,计算后会被传回原来的 worker 以进行后续计算。通过这种并行方式,模型规模可以以线性扩展,从而支持研究者探索更大规模的模型。这种模式被称为 FastMoE 的模型并行模式。

值得一提的是,FastMoE 已经和英伟达开发的超大规模预训练工具 Megatron-LM 进行了深度整合,从而使研究者对现有代码做尽量小的修改即可并行运行基于 MoE 的超大规模预训练模型。开发者在 Megatron-LM 的 GPT 模型上进行了测试。如图 7 所示,类似在 Transformer-XL 上观察到的现象,一个 96 个 experts 的 GPT 模型可以收敛得比 GPT 模型更快。

图 7:FastMoE-GPT (96 个 experts)在 GPT 上前 60K 步的 Training Loss,其收敛速度显著快于 GPT。

智源研究院

新型人工智能研究机构、支持科学家勇闯 AI「无人区」

智源研究院是在科技部和北京市委市政府的指导和支持下成立的新型研发机构,旨在聚焦原始创新和核心技术,建立自由探索与目标导向相结合的科研体制,支持科学家勇闯人工智能科技前沿“无人区”。

FastMoE 团队成员来自于智源研究院和清华大学计算机系 KEG 和 PACMAN 实验室,打通了算法、系统等不同背景的学术人才,由智源研究院学术副院长 - 清华大学计算机系唐杰教授、智源青年科学家 - 清华大学计算机系翟季冬副教授、智源青年科学家 - 循环智能创始人杨植麟博士领导,团队成员有清华大学计算机系博士研究生何家傲、裘捷中以及本科生曾奥涵。

原文标题:首个支持 PyTorch 框架的 MoE 系统来了!智源联合清华开源FastMoE,万亿AI模型基石

文章出处:【微信公众号:通信信号处理研究所】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46872

    浏览量

    237602
  • pytorch
    +关注

    关注

    2

    文章

    803

    浏览量

    13150

原文标题:首个支持 PyTorch 框架的 MoE 系统来了!智源联合清华开源FastMoE,万亿AI模型基石

文章出处:【微信号:tyutcsplab,微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    字节跳动与清华AIR成立联合研究中心

    近日,清华大学智能产业研究院(AIR)与字节跳动共同宣布成立“可扩展大模型智能技术联合研究中心”(SIA Lab),并在清华大学举行了隆重的成立仪式。
    的头像 发表于 10-12 15:24 333次阅读

    澎峰科技高性能大模型推理引擎PerfXLM解析

    自ChatGPT问世以来,大模型遍地开花,承载大模型应用的高性能推理框架也不断推出,大有百家争鸣之势。在这种情况下,澎峰科技作为全球领先的智能计算服务提供商,在2023年11月25日发布了针对大语言
    的头像 发表于 09-29 10:14 389次阅读
    澎峰科技<b class='flag-5'>高性能</b>大模型推理引擎PerfXLM解析

    华发数智携手字节跳动共同发布AI数字人及大模型综合解决方案

    近日,珠海华发数智技术有限公司(简称:华发数智)携手字节跳动旗下领先的云服务平台火山引擎,共同发布了AI数字人及大模型综合解决方案,标志着华发集团在AI大模型技术探索与应用上迈出了重要
    的头像 发表于 08-07 16:53 620次阅读

    pytorch环境搭建详细步骤

    PyTorch作为一个广泛使用的深度学习框架,其环境搭建对于从事机器学习和深度学习研究及开发的人员来说至关重要。以下将介绍PyTorch环境搭建的详细步骤,包括安装Anaconda、配置清华
    的头像 发表于 08-01 15:38 715次阅读

    tensorflow和pytorch哪个更简单?

    工业界广泛使用、具有丰富生态系统和跨平台支持框架,TensorFlow可能更适合您。以下是tensorflow和pytorch的介绍: TensorFlow和
    的头像 发表于 07-05 09:45 787次阅读

    tensorflow和pytorch哪个好

    tensorflow和pytorch都是非常不错的强大的框架,TensorFlow还是PyTorch哪个更好取决于您的具体需求,以下是关于这两个框架的一些关键点: TensorFlow
    的头像 发表于 07-05 09:42 629次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    学习框架,它们各自拥有独特的特点和优势。本文将从背景介绍、核心特性、操作步骤、性能对比以及选择指南等方面对TensorFlow和PyTorch进行详细比较,以帮助读者了解这两个框架的优
    的头像 发表于 07-02 14:04 891次阅读

    清华大学联合中交兴路发布《中国公路货运大数据碳排放报告》

    为践行并推动实现“双碳”目标,清华大学联合中交兴路发布《中国公路货运大数据碳排放报告》(以下简称:《报告》)。
    的头像 发表于 05-09 14:47 337次阅读
    <b class='flag-5'>清华大学联合</b>中交兴路<b class='flag-5'>发布</b>《中国公路货运大数据碳排放报告》

    Fedora 40发布,全方位升级并新增PyTorch支持

    在人工智能领域,Fedora 40首次引入了PyTorch软件包。尽管PyTorch是一款广受欢迎的深度学习框架,但其驱动程序及库的正确安装往往较为困难。
    的头像 发表于 04-24 10:45 962次阅读

    清华权威报告公布,文心一言多项指标“遥遥领先”

    最近,由清华大学基础模型研究中心联合中关村实验室研制的SuperBench大模型综合能力评测框架,正式对外发布2024年3月版《SuperBench大模型综合能力评测报告》。
    的头像 发表于 04-23 09:22 532次阅读
    <b class='flag-5'>清华</b>权威报告公布,文心一言多项指标“遥遥领先”

    昆仑万维发布新版MoE大语言模型天工2.0

    昆仑万维科技今日震撼发布全新升级的「天工2.0」MoE大语言模型以及配套的新版「天工AI智能助手」APP。此次更新标志着国内首个搭载MoE架构的千亿级参数大语言模型AI应用正式面向广大
    的头像 发表于 02-06 16:19 1232次阅读

    幻方量化发布了国内首个开源MoE大模型—DeepSeekMoE

    幻方量化旗下组织深度求索发布了国内首个开源 MoE 大模型 —— DeepSeekMoE,全新架构,免费商用。
    的头像 发表于 01-23 11:28 1450次阅读
    幻方量化<b class='flag-5'>发布</b>了国内<b class='flag-5'>首个</b>开源<b class='flag-5'>MoE</b>大模型—DeepSeekMoE

    对标OpenAI GPT-4,MiniMax国内首个MoE大语言模型全量上线

    MoE 架构全称专家混合(Mixture-of-Experts),是一种集成方法,其中整个问题被分为多个子任务,并将针对每个子任务训练一组专家。MoE 模型将覆盖不同学习者(专家)的不同输入数据。
    的头像 发表于 01-16 15:34 855次阅读
    对标OpenAI GPT-4,MiniMax国内<b class='flag-5'>首个</b><b class='flag-5'>MoE</b>大语言模型全量上线

    中国研制出全球首个全模拟光电智能计算芯片

    经长期联合攻关,清华大学研究团队突破传统芯片的物理瓶颈,创造性提出光电融合的全新计算框架,并研制出国际首个全模拟光电智能计算芯片(简称ACCEL)。
    的头像 发表于 12-04 17:39 1166次阅读

    256核!赛昉发布全新RISC-V众核子系统IP平台

    (Dubhe-90)的高性能RISC-V众核子系统IP平台。 StarLink-700是赛昉科技自研的支持缓存一致性的Interconnect Fabric IP,是国内首款Mesh架构互联总线IP
    发表于 11-29 13:37