0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC MOSFET单管在并联条件下的均流特性分析

QjeK_yflgybdt 来源:英飞凌工业半导体 作者:英飞凌工业半导体 2021-03-11 09:22 次阅读

关于SiC MOSFET的并联问题,英飞凌已陆续推出了很多技术资料,帮助大家更好的理解与应用。这篇微信文章将延续“仿真看世界”系列一贯之风格,借助器件SPICE模型与Simetrix仿真环境,分析SiC MOSFET单管在并联条件下的均流特性。

仿真只是工具,仿真无法替代实验,仿真只供参考,切勿痴迷迷信。以上寒暄既毕,我们直奔主题:

1、选取仿真研究对象

SiC MOSFET

IMZ120R045M1(1200V/45mΩ)、TO247-4pin、两并联

Driver IC

1EDI40I12AF、单通道、磁隔离、驱动电流±4A(min)

2、仿真电路Setup

如图1所示,基于双脉冲的思路,搭建双管并联的主回路和驱动回路,并设置相关杂散参数,环境温度为室温。

外部主回路:直流源800Vdc、母线电容Capacitor(含寄生参数)、母线电容与半桥电路之间的杂散电感Ldc_P和Ldc_N、双脉冲电感Ls_DPT

并联主回路:整体为半桥结构,双脉冲驱动下桥SiC MOSFET,与上桥的SiC MOSFET Body Diode进行换流。下桥为Q11和Q12两颗IMZ120R045M1,经过各自发射极(源极)电感Lex_Q11和Lex_Q12,以及各自集电极(漏极)电感Lcx_Q11和Lcx_Q12并联到一起;同理上桥的Q21和Q22的并联结构也是类似连接。

并联驱动回路:基于TO247-4pin的开尔文结构,功率发射极与信号发射级可彼此解耦,再加上1EDI40I12AF这颗驱动芯片已配备OUTP与OUTN管脚,所以,每个单管的驱动部分都有各自的Rgon、Rgoff和Rgee(发射极电阻),进行两并联后与驱动IC的副边相应管脚连接。

驱动部分设置:通过调整驱动IC副边电源和稳压电路,调整门级电压Vgs=+15V/-3V,然后设置门极电阻Rgon=15Ω,Rgoff=5Ω,Rgee先近似设为0Ω(1pΩ),外加单管门极与驱动IC之间的PCB走线电感。

图1.基于TO247-4Pin的SiC双管并联的双脉冲电路示意图

3、并联动态均流仿真

SiC MOSFET并联的动态均流与IGBT类似,只是SiC MOSFET开关速度更快,对一些并联参数会更为敏感。如图2所示,我们先分析下桥Q11和Q12在双脉冲开关过程中的动态均流特性及其影响因素:

图2.下桥SiC双管并联的双脉冲电路示意图

3.1 器件外部功率源极电感Lex对并联开关特性的影响

设置Lex_Q11=5nH,Lex_Q12=10nH,其他参数及仿真结果如下:

图3.不同Lex电感的并联均流仿真结果

3.2 器件外部功率漏极电感Lcx对并联开关特性的影响

设置Lcx_Q11=5nH,Lcx_Q12=10nH,其他参数及仿真结果如下:

图4.不同Lcx电感的并联均流仿真结果

3.3 器件外部门级电感Lgx对并联开关特性的影响

设置门级电感Lgx_Q11=20nH,Lgx_Q12=40nH,其中Rgon和Rgoff的门级电感都是Lgx,其他参数及仿真结果如下:

图5.不同Lgx电感的并联均流仿真结果

3.4器件外部源极环流电感Lgxe和环流电阻Rgee对并联开关特性的影响

在Lex电感不对称(不均流)的情况下,设置不同的源极抑制电感和电阻Lgxe=20nH,Rgee=1Ω和3Ω,看看对驱动环流的抑制与均流效果,其仿真结果如下:

图6.加源极抑制电感和电阻之前(虚线)和加之后(实线)的均流特性变化

图7.不同源极抑制电感和电阻(1Ω虚线)和(3Ω实线)的均流特性变化

4、总结

基于以上TO247-4pin的SiC MOSFET两并联的仿真条件与结果,我们可以得到如下一些初步的结论(TO-247-3pin由于源极回路相对复杂,且看下期“仿真看世界”详细分解):

1、并联单管的源极电感Lex差异,SiC MOSFET的开通与关断的均流对此非常敏感。因为,源极电感的差异也会耦合影响到驱动回路,以进一步影响均流。如下图8所示,以关断为例,由于源极电感Lex不同,造成源极环流和源极的电位差(VQ11_EE-VQ12_EE),推高了Q11源极电压VQ11_EE,间接降低了Q11门级与源极之间的电压Vgs_Q11。

图8.不同源极电感时,关断时的源极环流与源极电位差

2、并联单管的漏极电感Lcx差异,对均流影响的影响程度要明显低与源极电感。因为漏极电感不会直接影响由辅助源极和功率源极构成的源极环流回路。

3、门极电感差异对动态均流的影响不明显,而且驱动电压Vgs波形几乎没有变化。如果把主回路的总杂散电感减小,同时把门级电阻变小,让SiC工作在更快的di/dt和dv/dt环境,此时门级电感对均流的影响可能会稍微明显一点。

4、辅助源极电阻Rgee,对抑制源极环流和改善动态均流的效果也不甚明显。

行文将尽,去意阑珊;想必大家心中难免困惑:既然Rgee对抑制源极环流效果一般,那如果给门极增加一点Cge电容呢?为此,又补充了一组仿真,以飨读者:

图9 增加1nF门级Cge电容对源极不均流特性的影响(虚线为无Cge,实线为有Cge)

由上述仿真可以看出,Cge电容对于关断几乎没有影响,而Cge之于开通只是以更慢的开通速度,增加了Eon,同时减轻了开通电流振荡,但是对于开通的均流差异和损耗差异,影响也不大。

原文标题:仿真看世界之SiC MOSFET单管的并联均流特性

文章出处:【微信公众号:英飞凌工业半导体】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电路
    +关注

    关注

    173

    文章

    5984

    浏览量

    173234
  • SiC
    SiC
    +关注

    关注

    30

    文章

    2924

    浏览量

    63126

原文标题:仿真看世界之SiC MOSFET单管的并联均流特性

文章出处:【微信号:yflgybdt,微信公众号:英飞凌工业半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    相关推荐

    MOS并联使用:如何保证电流

    。因此,如何保证并联MOS的电流,是设计中的一个关键问题。今天我们将从选型、布局和电路设计三个方面,探讨实现电流
    的头像 发表于 02-13 14:06 176次阅读
    MOS<b class='flag-5'>管</b>的<b class='flag-5'>并联</b>使用:如何保证电流<b class='flag-5'>均</b><b class='flag-5'>流</b>?

    如何通过颗芯片实现双通道控制?主流混碳栅极驱动芯片解析

    第二步中,我们我们进入逆变器层级,探讨如何在不同负载条件下,充分利用SiC MOSFET和Si IGBT的电流能力,以达到效率与性能的最佳平衡? 通过前两步的讨论,我们知道了:通过
    的头像 发表于 02-08 09:10 129次阅读
    如何通过<b class='flag-5'>单</b>颗芯片实现双通道控制?主流混碳栅极驱动芯片解析

    碳化硅(SiCMOSFET并联应用控制技术的综述

    碳化硅(SiCMOSFET并联应用控制技术的综述,倾佳电子杨茜综合了当前研究进展与关键技术方向。
    的头像 发表于 02-05 14:36 138次阅读
    碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>MOSFET</b><b class='flag-5'>并联</b>应用<b class='flag-5'>均</b><b class='flag-5'>流</b>控制技术的综述

    沟槽型SiC MOSFET的结构和应用

    碳化硅(SiC)作为第三代半导体材料,因其出色的宽禁带、高临界击穿电场、高电子饱和迁移速率和高导热率等特性新能源、智能电网以及电动汽车等多个领域展现出广阔的应用前景。其中,沟槽型SiC
    的头像 发表于 02-02 13:49 214次阅读

    SiC MOSFET的参数特性

    碳化硅(SiCMOSFET作为宽禁带半导体材料(WBG)的一种,具有许多优异的参数特性,这些特性使其高压、高速、高温等应用中表现出色。本
    的头像 发表于 02-02 13:48 204次阅读

    三极的工作过程和电路结构

    三极是一种特殊的半导体器件,它在一定条件下能够提供稳定的电流输出,不受负载变化的影响。这种特性使其多种电子电路中得到了广泛应用,如L
    的头像 发表于 02-02 13:47 129次阅读

    Si IGBT和SiC MOSFET混合器件特性解析

    大电流 Si IGBT 和小电流 SiC MOSFET 两者并联形成的混合器件实现了功率器件性能和成本的折衷。 但是SIC MOS和Si IGBT的器件
    的头像 发表于 01-21 11:03 827次阅读
    Si IGBT和<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>混合器件<b class='flag-5'>特性</b>解析

    AOS MOSFET并联在高功率设计中的应用

    ,从而提高系统的可靠性。然而,当两个或更多MOSFET并联时,应考虑电流的一致性,以便在瞬态和稳态条件下平衡通过每个MOSFET的电流。
    的头像 发表于 11-27 15:32 425次阅读
    AOS  <b class='flag-5'>MOSFET</b><b class='flag-5'>并联</b>在高功率设计中的应用

    应用笔记 | SiC模块并联驱动振荡的抑制方法

    SiC MOSFET与传统Si器件相比,具有高电压、大电流、高速驱动、低损耗、高温稳定等诸多优点,是新一代器件。近年来,利用这些优异特性,作为向大功率发展的电动汽车 (EV) 的牵引逆变器电路,
    发表于 11-27 14:23

    高频条件下的耦合线圈出现负值的原因是什么

    同等条件下绕制的相同圈数的耦合线圈100khz,1v的条件下测试,为什么有一些数值正常,有一些数值为负值?
    发表于 11-06 19:05

    监控多个超量程条件下的电流

    电子发烧友网站提供《监控多个超量程条件下的电流.pdf》资料免费下载
    发表于 09-19 13:17 0次下载
    监控多个超量程<b class='flag-5'>条件下</b>的电流

    SiC MOSFETSiC SBD的区别

    SiC MOSFET(碳化硅金属氧化物半导体场效应晶体)和SiC SBD(碳化硅肖特基势垒二极)是两种基于碳化硅(
    的头像 发表于 09-10 15:19 2255次阅读

    XTR111精度是指什么条件下的精度?精度测试条件有哪些?

    XTR111这颗芯片在数据手册中提到精度为0.015%;我想问一这个精度是指什么条件下的精度,是否考虑了温漂,及输入失调电压和输入失调电流。 手册中文查到什么
    发表于 08-13 08:05

    触发器不同输入条件下的输出状态

    触发器是数字电路中非常重要的组成部分,它们能够根据输入条件的变化来改变并保持输出状态。不同的输入条件下,触发器的输出状态会呈现出不同的特性。以下将详细描述几种常见触发器(RS触发器、
    的头像 发表于 08-12 10:42 3723次阅读

    PCIM2024论文摘要|并联SiC MOSFET研究

    /摘要/并联SiCMOSFET面临着许多技术挑战,包括电流不平衡、不同的热性能、过电压等。本文介绍了不同参数对并联SiCMOSFET分流影响的理论分析和数学计算。提出了基于SPICE模型
    的头像 发表于 07-25 08:14 662次阅读
    PCIM2024论文摘要|<b class='flag-5'>并联</b><b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的<b class='flag-5'>均</b><b class='flag-5'>流</b>研究