0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

谷歌AI研发TensorFlow3D操作速度竟提高二十倍

新机器视觉 来源:Google AI 作者:Google AI 2021-03-12 09:33 次阅读

导读

Google AI发布了TensorFlow 3D,将3D深度学习能力引入TensorFlow,加入3D稀疏卷积网络,在Waymo Open数据集上的实验表明,这种实现比预先设计好的TensorFlow操作提速「20倍」。随着自动驾驶汽车与机器人的深入发展,激光雷达、深度传感摄像机、雷达等3D传感器已经成为了获取道路数据的必要设备。而利用这些传感器的机器学习系统则显得尤为重要,因为它可以帮助硬件在现实世界中进行导航等操作。

近期,包括目标检测、透明目标检测等模型的3D场景理解方面取得了很大进展,但是由于3D数据可用的工具和资源有限,这个领域仍面临挑战。

TensorFlow 3D:TensorFlow与3D深度学习合体

为了进一步提高对3D场景的建模,简化研究人员的工作,Google AI发布了TensorFlow 3D (TF 3D) ,一个高度模块化、高效的库,旨在将3D深度学习能力引入TensorFlow. TF 3D提供了一系列当下常用的操作、损失函数、数据处理工具、模型和度量,使更多的研究团队能够开发、培训和部署最先进的3D场景理解模型。TF 3D包含用于最先进的3D语义分割、3D目标检测和3D实例分割的培训和评估任务,还支持分布式训练。

另外,TF 3D还支持其他潜在的应用,如三维物体形状预测、点云配准和点云增密。此外,它提供了一个统一的数据集规范和训练、评价标准三维场景理解数据集的配置。

目前,TF 3D支持Waymo Open、 ScanNet和Rio数据集。然而,用户可以自由地将其他流行的数据集,如NuScenes和Kitti,转换成类似的格式,并将其用于已有或自定义的pipeline模型中,还可以利用TF 3D进行各种3D深度学习研究和应用,从快速原型设计到部署实时推理系统。

左边显示的是TF 3D中3D物体检测模型在Waymo Open Dataset的一帧画面上的输出示例。右边是ScanNet数据集上3D实例分割模型的输出示例。

在这里,我们将介绍在TF 3D中提供的高效且可配置的稀疏卷积骨干,这是在各种3D场景理解任务中获得最先进结果的关键。此外,我们将逐一介绍TF 3D目前支持的3个流水线任务: 3D语义分割、3D目标检测分割和3D实例分割。

3D稀疏卷积网络

传感器采集到的3D数据通常包含一个场景,该场景包含一组感兴趣的物体(如汽车、行人等),其周围大多是开放空间。所以,3D数据本质上是稀疏的。在这样的环境中,卷积的标准实现将需要大量的计算、消耗大量的内存。因此,在TF 3D 中,我们采用了流形稀疏卷积(submanifold sparse convolution)和池操作,这些操作可以更有效地处理3D稀疏数据。稀疏卷积模型是大多数户外自动驾驶(如Waymo,NuScenes)和室内基准测试(如 ScanNet)中应用的sota方法的关键。

谷歌还应用了各种CUDA技术来加快计算速度(如hash、在共享内存中分区/缓存过滤器以及使用位操作)。在Waymo Open数据集上的实验表明,这种实现比预先设计好的TensorFlow操作要快「20倍」左右。

图源:Waymo Open Dataset on GitHub

然后,TF 3D使用3D流形稀疏U-Net架构来提取每个voxel的特征。通过让网络提取粗细特征并将它们组合起来进行预测,U-Net架构已被证明是有效的。

U-Net网络由编码器、瓶颈和解码器三个模块组成,每个模块都由许多稀疏卷积块组成,并可能进行池化或非池化操作。

一个3D稀疏体素U-Net架构。注意,一个水平的箭头接收体素特征,并对其应用流形稀疏卷积。向下移动的箭头会执行流形稀疏池化。向上移动的箭头将收集池化的特征,与水平方向箭头的特征进行concat,并对concat后的特征进行流形稀疏卷积。

上述稀疏卷积网络是TF 3D提供的3D场景理解pipeline模型的backbone。

下面描述的每个模型使用这个骨干网络提取稀疏体素特征,然后添加一个或多个额外的预测头来推断感兴趣的任务。

用户可以通过改变编码器/解码器层数和每层卷积的数量来配置U-Net网络,并通过修改卷积滤波器的尺寸,从而能够通过不同的网络配置来权衡的速度和精度。

三维语义分割

三维语义分割模型只有一个输出,用于预测每一个点的语义分数,将其映射回点,预测每一个点的语义标签从ScanNet数据集对室内场景进行3D语义分割。

三维实例分割

在三维实例分割中,除了要预测语义,更重要的是将同一对象的体素组合在一起。在TF 3D中使用的3D实例分割算法是基于用深度度量学习方法进行的2D图像分割工作。这种模型预测能预测每个体素的实例嵌入向量以及每个体素的语义评分。

实例嵌入向量将体素映射到一个嵌入空间,其中对应于同一对象实例的体素相距很近,而对应于不同对象的体素相距很远。在这种情况下,输入是一个点云而不是一个图像,并且他将使用一个三维稀疏网络而不是一个二维图像网络。在推理过程中利用贪心算法选取实例种子,并利用体素嵌入的距离函数将不同的体素聚合到对应的实例上去。

三维目标检测

目标检测模型可以预测每个体素的大小、中心和旋转矩阵以及对象的语义评分。在推理时,推选机制将给出的多个候选框处理为少数几个精确的3D目标框。在训练时使用了预测与GT间的Huber Loss距离来计算损失。由于利用大小、中心和旋转矩阵估算框边角是可差分过程,损失可以自然地传递到预测过程的权重中。研究人员利用动态框分类损失来对预测的框进行正例和负例进行区分。

ScanNet数据集上的3D物体检测结果

TF 3D只是市场上的3D深度学习扩展之一。2020年,Facebook推出了PyTorch3D,专注于3D渲染和虚拟现实。另一个是英伟达的Kaolin,这是一个模块化的可分辨渲染的应用,如高分辨率模拟环境。

从这个概述来看,TF 3D应用程序似乎更专注于机器人感知和映射,而其他选项则更专注于3D模拟和渲染。为了实现3D渲染,Google推出了TensorFlow Graphics.

参考资料

https://ai.googleblog.com/2021/02/3d-scene-understanding-with-tensorflow.html

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 3D
    3D
    +关注

    关注

    9

    文章

    2895

    浏览量

    107676
  • tensorflow
    +关注

    关注

    13

    文章

    329

    浏览量

    60554

原文标题:提速20倍!谷歌AI发布TensorFlow 3D,智能汽车场景亲测好用

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    中兴通讯全场景AI终端应用与裸眼3D新品亮相

    ”的产品战略与理念,终端业务六大AI主题展示吸引了众多关注,内容覆盖全球领先的AI裸眼3DAI同声传译和方言互译、AI安全反诈、
    的头像 发表于 10-15 10:00 958次阅读

    谷歌Gemini 1.5 Flash模型升级,AI聊天速度飙升50%

    谷歌近期对其Gemini AI系列进行了重大更新,推出了Gemini 1.5 Flash模型。此次升级的核心亮点在于显著提升了AI聊天的响应速度,官方宣称最高可达50%的增速,为用户带
    的头像 发表于 09-06 18:06 787次阅读

    stm32mp135d的板子可不可以跑tensorflow的模型啊?

    请问是stm32mp135d的板子可不可以跑tensorflow的模型啊?
    发表于 07-18 06:49

    tensorflow和pytorch哪个更简单?

    TensorFlow和PyTorch都是用于深度学习和机器学习的开源框架。TensorFlow由Google Brain团队开发,而PyTorch由Facebook的AI研究团队开发。 易用性:
    的头像 发表于 07-05 09:45 916次阅读

    TensorFlow的定义和使用方法

    TensorFlow是一个由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护的开源机器学习库。它基于数据流编程(dataflow programming)的概念,将复杂的数学运算表示为
    的头像 发表于 07-02 14:14 829次阅读

    微软被曝将AI研发外包给OpenAI

    网络安全公司Okta的首席执行官托德·麦金农(Todd McKinnon)在CNBC的专访中分享了关于当前科技巨头在人工智能(AI)领域的战略布局的见解。他特别指出,谷歌在捍卫其搜索引擎霸主地位的同时,正努力保持AI
    的头像 发表于 06-12 15:57 389次阅读

    谷歌CEO皮查伊探讨AI革命:影响深远,AI将融入日常工作

    在访谈中,主持人首先询问皮查伊为何选择使用谷歌AI,他回应称,AI将对我们的生活产生深远影响。“AI的应用多种多样,能提升用户体验,简化工作流程,还能与
    的头像 发表于 05-28 15:00 593次阅读

    谷歌推出Trillium AI芯片,性能提高近5倍

    谷歌推出了其最新的人工智能数据中心芯片——Trillium。这款芯片是谷歌的第六代产品,与上一代TPU v5e相比,Trillium在每个芯片上的峰值计算性能提高了4.7倍,节能67%以上。
    的头像 发表于 05-16 10:39 798次阅读

    谷歌钱包提高适配门槛,部分旧机型无法使用

    谷歌钱包是谷歌专为安卓设备研发的支付应用,用户可借助NFC和商店通行证/门票实现快捷支付功能。目前,谷歌钱包要求设备至少搭载Android 9及以上版本
    的头像 发表于 05-13 15:31 573次阅读

    谷歌DeepMind推出新一代药物研发AI模型AlphaFold 3

    谷歌DeepMind公司近日重磅推出了一款名为AlphaFold 3的全新药物研发AI模型,这一创新技术将为科学家们提供前所未有的帮助,使他们能更精确地理解疾病机制,进而开发出更高效的
    的头像 发表于 05-10 09:35 406次阅读

    谷歌模型框架是什么软件?谷歌模型框架怎么用?

    谷歌模型框架通常指的是谷歌开发的用于机器学习和人工智能的软件框架,其中最著名的是TensorFlowTensorFlow是一个开源的机器学习框架,由
    的头像 发表于 03-01 16:25 914次阅读

    谷歌模型合成工具怎么用

    谷歌模型合成工具主要是指Dreamfusion,这是Google的大型AI图像模型Imagen与NeRF的3D功能相结合的一种技术。Dreamfusion是Dream Fields的演变,Dream Fields是
    的头像 发表于 02-29 17:33 827次阅读

    谷歌DeepMind推新AI模型Genie,能生成2D游戏平台

    据报道,谷歌公司的DeepMind团队近期发布了AI模型Genie,此模型拥有多达110亿个参数,能够依据用户提供的图片及提示词创建出相当完整的2D游戏场景。
    的头像 发表于 02-27 14:53 807次阅读

    谷歌推出AI扩散模型Lumiere

    近日,谷歌研究院重磅推出全新AI扩散模型Lumiere,这款模型基于谷歌自主研发的“Space-Time U-Net”基础架构,旨在实现视频生成的一次性完成,同时保证视频的真实性和动作
    的头像 发表于 02-04 13:49 1063次阅读

    AMD发布适用于Linux系统的XDNA驱动,助力APU AI引擎

    AMD于去年推出了Ryzen 7040“凤凰城”系列APU,其中首次搭载了基于Xilinx IP的XDNA架构AI引擎。借助此引擎,PyTorch和TensorFlow等机器学习框架的运行速度得以显著
    的头像 发表于 01-30 14:04 976次阅读