0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高斯滤波器的原理及其实现过程

新机器视觉 来源:新机器视觉 作者:新机器视觉 2021-03-20 10:41 次阅读

本文主要介绍了高斯滤波器的原理及其实现过程 高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1;而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小。 什么是高斯滤波器 既然名称为高斯滤波器,那么其和高斯分布(正态分布)是有一定的关系的。一个二维的高斯函数如下:

cddf0d76-88ef-11eb-8b86-12bb97331649.png

其中(x,y)(x,y)为点坐标,在图像处理中可认为是整数;σσ是标准差。要想得到一个高斯滤波器的模板,可以对高斯函数进行离散化,得到的高斯函数值作为模板的系数。例如:要产生一个3×33×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)

这样,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。 对于窗口模板的大小为(2k+1)×(2k+1),模板中各个元素值的计算公式如下:

ce5ab9ee-88ef-11eb-8b86-12bb97331649.png

这样计算出来的模板有两种形式:小数和整数。

小数形式的模板,就是直接计算得到的值,没有经过任何的处理;

整数形式的,则需要进行归一化处理,将模板左上角的值归一化为1,下面会具体介绍。使用整数的模板时,需要在模板的前面加一个系数,系数为也就是模板系数和的倒数。

高斯模板的生成 知道模板生成的原理,实现起来也就不困难了

void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐标的原点 double x2, y2; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; window[i][j] = g; } } double k = 1 / window[0][0]; // 将左上角的系数归一化为1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] *= k; } }}   需要一个二维数组,存放生成的系数(这里假设模板的最大尺寸不会超过11);第二个参数是模板的大小(不要超过11);第三个参数就比较重要了,是高斯分布的标准差。 生成的过程,首先根据模板的大小,找到模板的中心位置ksize/2。然后就是遍历,根据高斯分布的函数,计算模板中每个系数的值。   需要注意的是,最后归一化的过程,使用模板左上角的系数的倒数作为归一化的系数(左上角的系数值被归一化为1),模板中的每个系数都乘以该值(左上角系数的倒数),然后将得到的值取整,就得到了整数型的高斯滤波器模板。   下面截图生成的是,大小为3×3,σ=0.83×3,σ=0.8的模板  

对上述解结果取整后得到如下模板: ced64668-88ef-11eb-8b86-12bb97331649.png   这个模板就比较熟悉了,其就是根据σ=0.8的高斯函数生成的模板。   至于小数形式的生成也比较简单,去掉归一化的过程,并且在求解过程后,模板的每个系数要除以所有系数的和。具体代码如下:

void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐标的原点 double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; sum += g; window[i][j] = g; } } //double k = 1 / window[0][0]; // 将左上角的系数归一化为1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] /= sum; } }}   3×3,σ=0.8的小数型模板。

σσ值的意义及选取 通过上述的实现过程,不难发现,高斯滤波器模板的生成最重要的参数就是高斯分布的标准差σσ。标准差代表着数据的离散程度,如果σσ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;反之,σσ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。 来看下一维高斯分布的概率分布密度图:

横轴表示可能得取值x,竖轴表示概率分布密度F(x),那么不难理解这样一个曲线与x轴围成的图形面积为1。σσ(标准差)决定了这个图形的宽度,可以得出这样的结论:σσ越大,则图形越宽,尖峰越小,图形较为平缓;σσ越小,则图形越窄,越集中,中间部分也就越尖,图形变化比较剧烈。这其实很好理解,如果sigma也就是标准差越大,则表示该密度分布一定比较分散,由于面积为1,于是尖峰部分减小,宽度越宽(分布越分散);同理,当σσ越小时,说明密度分布较为集中,于是尖峰越尖,宽度越窄! 于是可以得到如下结论: σσ越大,分布越分散,各部分比重差别不大,于是生成的模板各元素值差别不大,类似于平均模板; σσ越小,分布越集中,中间部分所占比重远远高于其他部分,反映到高斯模板上就是中心元素值远远大于其他元素值,于是自然而然就相当于中间值得点运算。 基于OpenCV的实现 在生成高斯模板好,其简单的实现和其他的空间滤波器没有区别,具体代码如下:

void GaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels() || src.channels() == 3); // 只处理单通道或者三通道图像 const static double pi = 3.1415926; // 根据窗口大小和sigma生成高斯滤波器模板 // 申请一个二维数组,存放生成的高斯模板矩阵 double **templateMatrix = new double*[ksize]; for (int i = 0; i < ksize; i++) templateMatrix[i] = new double[ksize]; int origin = ksize / 2; // 以模板的中心为原点 double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - origin, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - origin, 2); // 高斯函数前的常数可以不用计算,会在归一化的过程中给消去 double g = exp(-(x2 + y2) / (2 * sigma * sigma)); sum += g; templateMatrix[i][j] = g; } } for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { templateMatrix[i][j] /= sum; cout << templateMatrix[i][j] << " "; } cout << endl; } // 将模板应用到图像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int a = -border; a <= border; a++) { for (int b = -border; b <= border; b++) { if (channels == 1) { sum[0] += templateMatrix[border + a][border + b] * dst.at(i + a, j + b); } else if (channels == 3) { Vec3b rgb = dst.at(i + a, j + b); auto k = templateMatrix[border + a][border + b]; sum[0] += k * rgb[0]; sum[1] += k * rgb[1]; sum[2] += k * rgb[2]; } } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at(i, j) = static_cast(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast(sum[0]), static_cast(sum[1]), static_cast(sum[2]) }; dst.at(i, j) = rgb; } } } // 释放模板数组 for (int i = 0; i < ksize; i++) delete[] templateMatrix[i]; delete[] templateMatrix;}   只处理单通道或者三通道图像,模板生成后,其滤波(卷积过程)就比较简单了。不过,这样的高斯滤波过程,其循环运算次数为m×n×ksize2,其中m,n为图像的尺寸;ksize为高斯滤波器的尺寸。这样其时间复杂度为O(ksize2),随滤波器的模板的尺寸呈平方增长,当高斯滤波器的尺寸较大时,其运算效率是极低的。为了,提高滤波的运算速度,可以将二维的高斯滤波过程分解开来。  分离实现高斯滤波  由于高斯函数的可分离性,尺寸较大的高斯滤波器可以分成两步进行:首先将图像在水平(竖直)方向与一维高斯函数进行卷积;然后将卷积后的结果在竖直(水平)方向使用相同的一维高斯函数得到的模板进行卷积运算。具体实现代码如下:

// 分离的计算void separateGaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels()==1 || src.channels() == 3); // 只处理单通道或者三通道图像 // 生成一维的高斯滤波模板 double *matrix = new double[ksize]; double sum = 0; int origin = ksize / 2; for (int i = 0; i < ksize; i++) { // 高斯函数前的常数可以不用计算,会在归一化的过程中给消去 double g = exp(-(i - origin) * (i - origin) / (2 * sigma * sigma)); sum += g; matrix[i] = g; } // 归一化 for (int i = 0; i < ksize; i++) matrix[i] /= sum; // 将模板应用到图像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; // 水平方向 for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int k = -border; k <= border; k++) { if (channels == 1) { sum[0] += matrix[border + k] * dst.at(i, j + k); // 行不变,列变化;先做水平方向的卷积 } else if (channels == 3) { Vec3b rgb = dst.at(i, j + k); sum[0] += matrix[border + k] * rgb[0]; sum[1] += matrix[border + k] * rgb[1]; sum[2] += matrix[border + k] * rgb[2]; } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at(i, j) = static_cast(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast(sum[0]), static_cast(sum[1]), static_cast(sum[2]) }; dst.at(i, j) = rgb; } } } // 竖直方向 for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int k = -border; k <= border; k++) { if (channels == 1) { sum[0] += matrix[border + k] * dst.at(i + k, j); // 列不变,行变化;竖直方向的卷积 } else if (channels == 3) { Vec3b rgb = dst.at(i + k, j); sum[0] += matrix[border + k] * rgb[0]; sum[1] += matrix[border + k] * rgb[1]; sum[2] += matrix[border + k] * rgb[2]; } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at(i, j) = static_cast(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast(sum[0]), static_cast(sum[1]), static_cast(sum[2]) }; dst.at(i, j) = rgb; } } } delete[] matrix;} 代码没有重构较长,不过其实现原理是比较简单的。首先得到一维高斯函数的模板,在卷积(滤波)的过程中,保持行不变,列变化,在水平方向上做卷积运算;接着在上述得到的结果上,保持列不边,行变化,在竖直方向上做卷积运算。这样分解开来,算法的时间复杂度为O(ksize)O(ksize),运算量和滤波器的模板尺寸呈线性增长。 在OpenCV也有对高斯滤波器的封装GaussianBlur,其声明如下:

CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT ); 二维高斯函数的标准差在x和y方向上应该分别有一个标准差,在上面的代码中一直设其在x和y方向的标准是相等的,在OpenCV中的高斯滤波器中,可以在x和y方向上设置不同的标准差。 下图是自己实现的高斯滤波器和OpenCV中的GaussianBlur的结果对比

上图是5×5,σ=0.8的高斯滤波器,可以看出两个实现得到的结果没有很大的区别。 总结 高斯滤波器是一种线性平滑滤波器,其滤波器的模板是对二维高斯函数离散得到。由于高斯模板的中心值最大,四周逐渐减小,其滤波后的结果相对于均值滤波器来说更好。 高斯滤波器最重要的参数就是高斯分布的标准差σσ,标准差和高斯滤波器的平滑能力有很大的能力,σσ越大,高斯滤波器的频带就较宽,对图像的平滑程度就越好。通过调节σσ参数,可以平衡对图像的噪声的抑制和对图像的模糊。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    161

    文章

    7846

    浏览量

    178413
  • 模板
    +关注

    关注

    0

    文章

    108

    浏览量

    20579
  • 函数
    +关注

    关注

    3

    文章

    4338

    浏览量

    62762

原文标题:高斯滤波器的原理及其实现过程(附模板代码)

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    图像高斯滤波的原理及FPGA实现思路

    1.概念 高斯分布 图像滤波高斯滤波介绍 图像处理算法|高斯滤波
    的头像 发表于 12-07 09:12 383次阅读
    图像<b class='flag-5'>高斯</b><b class='flag-5'>滤波</b>的原理及FPGA<b class='flag-5'>实现</b>思路

    高斯滤波和均值滤波的区别

    高斯滤波和均值滤波在图像处理中都是常用的平滑滤波方法,但它们之间存在一些关键的区别。以下是两者之间的主要区别: 1. 滤波原理
    的头像 发表于 09-29 09:40 735次阅读

    高斯滤波和双边滤波的区别

    高斯滤波和双边滤波在图像处理中都是常用的平滑滤波技术,但它们之间存在一些显著的区别。以下是两者之间的主要区别: 一、基本原理 高斯
    的头像 发表于 09-29 09:37 508次阅读

    高斯滤波的卷积核怎么确定

    N为一个奇数,如3、5、7等。奇数大小的卷积核有助于确定一个中心像素点,便于计算。 大小选择 :卷积核的大小决定了滤波器的范围。较大的卷积核可以覆盖更多的像素点,从而更好地平滑图像,但也可能导致图像细节丢失过多。因此,在
    的头像 发表于 09-29 09:29 629次阅读

    高斯滤波的基本原理有哪些

    高斯滤波的基本原理可以从以下几个方面进行阐述: 一、定义与性质 定义 :高斯滤波(Gaussian Filter)是一种常见的图像处理技术,实质上是一种信号的
    的头像 发表于 09-29 09:27 629次阅读

    emi滤波器是什么滤波器

    会对电子设备的正常工作产生影响,甚至导致设备损坏。因此,EMI滤波器在电子设备中具有非常重要的作用。 EMI滤波器的原理 EMI滤波器的基本原理是利用滤波器对电磁波进行选择性传输或阻断
    的头像 发表于 08-25 15:59 1117次阅读

    陷波滤波器原理及其作用是什么

    是通过特定的电路设计,实现对特定频率信号的抑制或消除。其核心思想是利用电路的谐振特性,使得特定频率的信号在电路中产生相位差,从而实现信号的抵消。 1.1 谐振原理 陷波滤波器的工作原理基于谐振原理。当电路中的电感和
    的头像 发表于 08-21 14:14 2502次阅读

    iir滤波器和fir滤波器的优势和特点

    (Infinite Impulse Response)滤波器是一种具有无限脉冲响应的数字滤波器。它的输出不仅取决于当前的输入值,还取决于之前的输入值。IIR滤波器通常由递归滤波器
    的头像 发表于 07-19 09:28 1671次阅读

    滤波器原理及其作用 滤波器电路图分析

    信号中的不同频率成分。这可以通过多种方式实现,包括模拟滤波器和数字滤波器滤波器的原理 频率响应概念 滤波器对不同频率信号的响应 频率选择
    的头像 发表于 06-20 15:59 9534次阅读
    <b class='flag-5'>滤波器</b>原理<b class='flag-5'>及其</b>作用 <b class='flag-5'>滤波器</b>电路图分析

    什么是低通滤波器?低通滤波器有什么作用?

    在电子工程领域中,滤波器是一种用于信号处理的重要元件。而低通滤波器作为滤波器的一种类型,具有其独特的频率响应特性。本文维爱普电源滤波器小编将详细探讨低通
    的头像 发表于 04-08 16:30 3888次阅读
    什么是低通<b class='flag-5'>滤波器</b>?低通<b class='flag-5'>滤波器</b>有什么作用?

    高通滤波器、低通滤波器、带通滤波器怎样测幅频特性?

    高通滤波器、低通滤波器、带通滤波器怎样测幅频特性? 高通滤波器、低通滤波器和带通滤波器是常用的
    的头像 发表于 03-28 17:28 5358次阅读

    滤波器的选用、安装及其

    滤波器,想必做电子的同行对这个器件再熟悉不过了,这是一个非常常见的,而且使用相当频繁的元件。 特别是涉及射频领域更是如此,可以毫不夸张的说,做射频电路就是学会使用各种滤波器的电路。因为芯片
    的头像 发表于 03-06 10:19 896次阅读
    <b class='flag-5'>滤波器</b>的选用、安装<b class='flag-5'>及其</b>它

    滤波器分类及其特点 滤波器电路的作用

    滤波器是一种可以改变信号频率特性的电路,它可以通过选择性地通过或抑制不同频率的信号来实现对特定频率信号的处理。不同类型的滤波器根据其频率响应和特点可以分为许多不同的类型,下面将详细介绍常见的
    的头像 发表于 02-03 10:22 1913次阅读

    什么是电源滤波器?如何安装电源滤波器

    什么是电源滤波器?如何安装电源滤波器? 电源滤波器是一种电子设备,通常被用于净化电源中的噪声和干扰。在电源中,噪声和干扰是由各种原因产生的,包括电网扰动,设备之间的相互干扰以及其他外部
    的头像 发表于 02-02 14:41 1027次阅读

    Pi滤波器的Python实现示例

    Pi 滤波器是一种出色的低通滤波器,与传统的 LC Pi 滤波器有很大不同。当 Pi 滤波器设计用于低通时,输出保持稳定且 k 系数恒定。
    的头像 发表于 02-01 14:35 1081次阅读
    Pi<b class='flag-5'>滤波器</b>的Python<b class='flag-5'>实现</b>示例