电致变色是电致变色材料的光学属性(反射率、透过率等)在外加电场的作用下发生稳定、可逆的变化的现象,在外观上表现为颜色和透明度的可逆变化。氧化钨材料作为典型的无机电致变色材料,由于其良好的热稳定性和化学稳定性,使其具有较高的商业化前景。然而,单一颜色变化(无色-蓝色之间切换)难以满足一些场景对色彩绚丽器件的需求,限制其进一步应用推广。因此,探索基于无机材料的多彩电致变色技术对电致变色领域发展具有重要意义。
近日,中国科学院苏州纳米技术与纳米仿生研究所研究员赵志刚团队基于前期对于氧化钨材料多彩电致变色技术的研究(Nat. Commun. 2020, 11, 302;Nano Lett. 2020, 20, 1912-1915),发现这种基于氧化钨材料的法布里-珀罗谐振腔结构的电致变色器件可实现丰富的颜色调控。在这种电致变色器件结构基础上,团队通过减薄谐振腔结构中的金属层厚度至4-8nm,设计出一种全新的“双面神”结构的电致变色器件(图a)。该器件正反两侧表现出强烈的颜色不对称性(图b),当施加电压进一步调制时,其一侧着色状态与另一侧着色状态明显不同,会产生更丰富的不对称颜色变化(图c),这与传统的电致变色器件所具有的对称颜色变化特性有较大差别。这种“双面神”效应是利用光学超薄金属层的复杂光学常数(n,k)引起反射光的异常相移来实现的。进一步地,为了实现不同特性的不对称颜色变化,研究选择了不同金属层作为光学吸收层,如钨(W)、钛(Ti)、铜(Cu)、银(Ag)层等,发现金属层的折射率(n)越大、消光系数(k)越大,器件颜色不对称性越强。
新型“双面神”电致变色器件结构及不对称颜色展示
为了更好、更有趣地展示这种新型“双面神”多彩电致变色技术,科研人员受自然界枯叶蝶的启发(其背侧与腹侧颜色不对称),制作出一个人工枯叶蝶器件来展示这种独特的“双面神”特性(图d)。这只人工蝴蝶的背侧和腹侧翅膀表面呈现出不同颜色,当它合上翅膀时,腹侧表现出暗淡的棕褐色,像一片干燥的叶子,可以帮助躲避捕食者;当它张开翅膀时,可以呈现出绚丽的颜色且可实现色彩转变。
该研究对新型电致变色器件的设计和构建提供了全新思路。未来,研究将立足于把这种器件的不对称颜色扩展到红外光谱(热辐射),并为这种新型电致变色器件探索各种新的应用场景。相关研究成果以Mimicking Nature's Butterflies: Electrochromic Devices with Dual‐Sided Differential Colorations为题,发表在Advanced Materials上。苏州纳米所博士生陈健为论文第一作者,赵志刚为论文通讯作者。研究工作得到国家自然科学基金面上项目、中科院青年创新促进会、中科院对外合作项目、江苏省六大人才高峰工程及江西省自然科学基金重点项目的资助。
责任编辑:lq
-
器件
+关注
关注
4文章
302浏览量
27762 -
电场
+关注
关注
2文章
164浏览量
20405
原文标题:苏州纳米所电致变色器件研究获进展
文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论