0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SIFT算法实现细节

新机器视觉 来源:新机器视觉 作者:新机器视觉 2021-03-29 14:04 次阅读

一. SIFT简介

1.1 算法提出的背景:

成像匹配的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相对应。传统的匹配算法往往是直接提取角点或边缘,对环境的适应能力较差,急需提出一种鲁棒性强、能够适应不同光照、不同位姿等情况下能够有效识别目标的方法。1999年British Columbia大学大卫.劳伊( David G.Lowe)教授总结了现有的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT(尺度不变特征变换),这种算法在2004年被加以完善。

1.2 算法思想:

将一幅图像映射(变换)为一个局部特征向量集;特征向量具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影变换也有一定不变性。

算法实现步骤简述:

SIFT算法的实质可以归为在不同尺度空间上查找特征点(关键点)的问题。

e901715c-8e94-11eb-8b86-12bb97331649.jpg

1.3 SIFT算法实现物体识别主要有三大工序:

1、提取关键点;

2、对关键点附加详细的信息(局部特征)也就是所谓的描述器;

3、通过两方特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,也就建立了景物间的对应关系。

二. SIFT算法实现细节

2.1. 构建尺度空间

尺度空间理论基础:

这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征。高斯核是唯一可以产生多尺度空间的核,一个图像的尺度空间, L( x,y,σ) ,定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ) 卷积运算。尺度是自然存在的,不是人为创造的!高斯卷积只是表现尺度空间的一种形式…

e93b8964-8e94-11eb-8b86-12bb97331649.png

e9bf065e-8e94-11eb-8b86-12bb97331649.png

其中 G(x,y,σ) 是尺度可变高斯函数(x,y)是空间坐标,是尺度坐标。σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。

ea0de828-8e94-11eb-8b86-12bb97331649.png

下图所示不同σ下图像尺度空间:

关于尺度空间的理解说明:

2kσ中的2是必须的,尺度空间是连续的。在 Lowe的论文中 ,将第0层的初始尺度定为1.6(最模糊),图片的初始尺度定为0.5(最清晰). 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以 Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。

图像金字塔的建立:

对于一幅图像I,建立其在不同尺度(scale)的图像,也成为子八度(octave),这是为了scale-invariant,也就是在任何尺度都能够有对应的特征点,第一个子八度的scale为原图大小,后面每个octave为上一个octave降采样的结果,即原图的1/4(长宽分别减半),构成下一个子八度(高一层金字塔)。

ea9317fa-8e94-11eb-8b86-12bb97331649.jpg

eaf5459c-8e94-11eb-8b86-12bb97331649.jpg

由图片size决定建几个塔,每塔几层图像(S一般为3-5层)。0塔的第0层是原始图像(或你double后的图像),往上每一层是对其下一层进行Laplacian变换(高斯卷积,其中σ值渐大,例如可以是σ, k*σ, k*k*σ…),直观上看来越往上图片越模糊。塔间的图片是降采样关系,例如1塔的第0层可以由0塔的第3层down sample得到,然后进行与0塔类似的高斯卷积操作。

2.2.关键点检测

为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点,如图所示。

eb65d532-8e94-11eb-8b86-12bb97331649.jpg

同一组中的相邻尺度(由于k的取值关系,肯定是上下层)之间进行寻找,在极值比较的过程中,每一组图像的首末两层是无法进行极值比较的,为了满足尺度变化的连续性,我们在每一组图像的顶层继续用高斯模糊生成了3幅图像,高斯金字塔有每组S+3层图像。DOG金字塔每组有S+2层图像。下图中s=3

ebd187aa-8e94-11eb-8b86-12bb97331649.jpg

这里解释下尺度变化的连续性:

假设s=3,也就是每个塔里有3层,则k=21/s=21/3,那么按照上图可得Gauss Space和DoG space 分别有3个(s个)和2个(s-1个)分量,在DoG space中,1st-octave两项分别是σ,kσ; 2nd-octave两项分别是2σ,2kσ;由于无法比较极值,我们必须在高斯空间继续添加高斯模糊项,使得形成σ,kσ,k2σ,k3σ,k4σ这样就可以选择DoG space中的中间三项kσ,k2σ,k3σ(只有左右都有才能有极值),那么下一octave中(由上一层降采样获得)所得三项即为2kσ,2k2σ,2k3σ,其首项2kσ=24/3。刚好与上一octave末项k3σ=23/3尺度变化连续起来,所以每次要在Gaussian space添加3项,每组(塔)共S+3层图像,相应的DoG金字塔有S+2层图像。

2.3.消除错配点

由于DoG值对噪声和边缘较敏感,因此,在上面DoG尺度空间中检测到局部极值点还要经过进一步的检验才能精确定位为特征点。为了提高关键点的稳定性,需要对尺度空间DoG函数进行曲线拟合。利用DoG函数在尺度空间的Taylor展开式:

ec55595e-8e94-11eb-8b86-12bb97331649.png

对上式求导,并令其为0,得到精确的位置, 得

eca72e96-8e94-11eb-8b86-12bb97331649.jpg

在已经检测到的特征点中,要去掉低对比度的特征点和不稳定的边缘响应点。去除低对比度的点:把上式代入其中,即在DoG Space的极值点处D(x)取值,只取前两项可得:

ece1e8a6-8e94-11eb-8b86-12bb97331649.jpg

ed158a30-8e94-11eb-8b86-12bb97331649.jpg,该特征点就保留下来,否则丢弃。

边缘响应的去除

一个定义不好的高斯差分算子的极值在横跨边缘的地方有较大的主曲率,而在垂直边缘的方向有较小的主曲率。主曲率通过一个2×2 的Hessian矩阵H求出:

ed7080f2-8e94-11eb-8b86-12bb97331649.jpg

导数由采样点相邻差估计得到。D的主曲率和H的特征值成正比,令α为较大特征值,β为较小的特征值,则

edc9874c-8e94-11eb-8b86-12bb97331649.jpg

令α=γβ,则

ee05e37c-8e94-11eb-8b86-12bb97331649.jpg

(r + 1)2/r的值在两个特征值相等的时候最小,随着r的增大而增大,因此,为了检测主曲率是否在某域值r下,只需检测

ee6b746c-8e94-11eb-8b86-12bb97331649.jpg

if (α+β)/ αβ> (r+1)2/r, throw it out. 在Lowe的文章中,取r=10。

2.4.关键点描述

上一步中确定了每幅图中的特征点,为每个特征点计算一个方向,依照这个方向做进一步的计算,利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备旋转不变性。

ee9913f4-8e94-11eb-8b86-12bb97331649.jpg

为(x,y)处梯度的模值和方向公式。其中L所用的尺度为每个关键点各自所在的尺度。至此,图像的关键点已经检测完毕,每个关键点有三个信息:位置,所处尺度、方向,由此可以确定一个SIFT特征区域。

梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。随着距中心点越远的领域其对直方图的贡献也响应减小.Lowe论文中还提到要使用高斯函数对直方图进行平滑,减少突变的影响。

在实际计算时,我们在以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度方向。梯度直方图的范围是0~360度,其中每45度一个柱,总共8个柱, 或者每10度一个柱,总共36个柱。Lowe论文中还提到要使用高斯函数对直方图进行平滑,减少突变的影响。直方图的峰值则代表了该关键点处邻域梯度的主方向,即作为该关键点的方向。

ef06707a-8e94-11eb-8b86-12bb97331649.jpg

直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向,通过对关键点周围图像区域分块,计算块内梯度直方图,生成具有独特性的向量,这个向量是该区域图像信息的一种抽象,具有唯一性。首先将坐标轴旋转为关键点的方向,以确保旋转不变性。以关键点为中心取8×8的窗口。

ef411798-8e94-11eb-8b86-12bb97331649.jpg

16*16的图中其中1/4的特征点梯度方向及scale,右图为其加权到8个主方向后的效果。图左部分的中央为当前关键点的位置,每个小格代表关键点邻域所在尺度空间的一个像素,利用公式求得每个像素的梯度幅值与梯度方向,箭头方向代表该像素的梯度方向,箭头长度代表梯度模值,然后用高斯窗口对其进行加权运算。

图中蓝色的圈代表高斯加权的范围(越靠近关键点的像素梯度方向信息贡献越大)。然后在每4×4的小块上计算8个方向的梯度方向直方图,绘制每个梯度方向的累加值,即可形成一个种子点,如图右部分示。此图中一个关键点由2×2共4个种子点组成,每个种子点有8个方向向量信息。这种邻域方向性信息联合的思想增强了算法抗噪声的能力,同时对于含有定位误差的特征匹配也提供了较好的容错性。

计算keypoint周围的16*16的window中每一个像素的梯度,而且使用高斯下降函数降低远离中心的权重。

efb6f0c6-8e94-11eb-8b86-12bb97331649.jpg

在每个4*4的1/16象限中,通过加权梯度值加到直方图8个方向区间中的一个,计算出一个梯度方向直方图。这样就可以对每个feature形成一个4*4*8=128维的描述子,每一维都可以表示4*4个格子中一个的scale/orientation. 将这个向量归一化之后,就进一步去除了光照的影响。

2.5.关键点匹配

生成了A、B两幅图的描述子,(分别是k1*128维和k2*128维),就将两图中各个scale(所有scale)的描述子进行匹配,匹配上128维即可表示两个特征点match上了。

实际计算过程中,为了增强匹配的稳健性,Lowe建议对每个关键点使用4×4共16个种子点来描述,这样对于一个关键点就可以产生128个数据,即最终形成128维的SIFT特征向量。此时SIFT特征向量已经去除了尺度变化、旋转等几何变形因素的影响,再继续将特征向量的长度归一化,则可以进一步去除光照变化的影响。当两幅图像的SIFT特征向量生成后,下一步我们采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。取图像1中的某个关键点,并找出其与图像2中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点。降低这个比例阈值,SIFT匹配点数目会减少,但更加稳定。

为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,Lowe提出了比较最近邻距离与次近邻距离的方法,距离比率ratio小于某个阈值的认为是正确匹配。因为对于错误匹配,由于特征空间的高维性,相似的距离可能有大量其他的错误匹配,从而它的ratio值比较高。Lowe推荐ratio的阈值为0.8。但作者对大量任意存在尺度、旋转和亮度变化的两幅图片进行匹配,结果表明ratio取值在0. 4~0. 6之间最佳,小于0. 4的很少有匹配点,大于0. 6的则存在大量错误匹配点。(如果这个地方你要改进,最好给出一个匹配率和ration之间的关系图,这样才有说服力)作者建议ratio的取值原则如下:

ratio=0. 4对于准确度要求高的匹配;

ratio=0. 6对于匹配点数目要求比较多的匹配;

ratio=0. 5一般情况下。

也可按如下原则:当最近邻距离<200时ratio=0. 6,反之ratio=0. 4。ratio的取值策略能排分错误匹配点。

当两幅图像的SIFT特征向量生成后,下一步我们采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。取图像1中的某个关键点,并找出其与图像2中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点。降低这个比例阈值,SIFT匹配点数目会减少,但更加稳定。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4607

    浏览量

    92826
  • 图像数据
    +关注

    关注

    0

    文章

    52

    浏览量

    11276
  • SIFT算法
    +关注

    关注

    0

    文章

    8

    浏览量

    7414

原文标题:经典的图像匹配算法----SIFT

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    请问ads1292算法支持实现疲劳监测吗?

    请问ads1292算法支持实现疲劳监测么,或者有什么更好的电极式其它方案来实现
    发表于 12-03 06:19

    【「从算法到电路—数字芯片算法的电路实现」阅读体验】+内容简介

    内容简介这是一本深入解读基础算法及其电路设计,以打通算法研发到数字IC设计的实现屏障,以及指导芯片设计工程师从底层掌握复杂电路设计与优化方法为目标的专业技术书。任何芯片(如WiFi芯片、5G芯片
    发表于 11-21 17:14

    【「从算法到电路—数字芯片算法的电路实现」阅读体验】+介绍基础硬件算法模块

    作为嵌入式开发者往往比较关注硬件和软件的协调。本书介绍了除法器,信号发生器,滤波器,分频器等基本算法的电路实现,虽然都是基础内容,但是也是最常用到的基本模块。 随着逆全球化趋势的出现,过去的研发
    发表于 11-21 17:05

    【「从算法到电路—数字芯片算法的电路实现」阅读体验】+一本介绍基础硬件算法模块实现的好书

    作为嵌入式开发者往往比较关注硬件和软件的协调。本书介绍了除法器,信号发生器,滤波器,分频器等基本算法的电路实现,虽然都是基础内容,但是也是最常用到的基本模块,本书的内容比较对本人胃口。 我们先来
    发表于 11-20 13:42

    Pure path studio内能否自己创建一个component,来实现特定的算法,例如LMS算法

    TLV320AIC3254EVM-K评估模块, Pure path studio软件开发环境。 问题:1.Pure path studio 内能否自己创建一个component,来实现特定的算法
    发表于 11-01 08:25

    名单公布!【书籍评测活动NO.46】从算法到电路 | 数字芯片算法的电路实现

    :elecfans123)领取书籍进行评测,如在5个工作日内未联系,视为放弃本次试用评测资格! 《从算法到电路——数字芯片算法的电路实现》 是一本深入解读基础算法及其电路设计,以打通
    发表于 10-09 13:43

    C加密算法实现

    电子发烧友网站提供《C加密算法实现.pdf》资料免费下载
    发表于 09-20 11:10 1次下载
    C加密<b class='flag-5'>算法</b>的<b class='flag-5'>实现</b>

    中伟视界:智能监控和预警,静止超时AI算法如何提升非煤矿山安全?

    本文详细介绍了静止超时AI算法在非煤矿山的工作原理、技术实现细节和应用场景,并分析了其在安全管理中的实际效果。通过智能监控和预警,静止超时AI算法能够提高矿山的安全防控水平,提升管理效
    的头像 发表于 07-14 11:29 1068次阅读
    中伟视界:智能监控和预警,静止超时AI<b class='flag-5'>算法</b>如何提升非煤矿山安全?

    FPGA能实现什么样的算法

    FPGA功能如此强大,请问用FPGA能实现或者比较适合实现什么样的算法
    发表于 05-26 20:18

    中国铁路网的Dijkstra算法实现案例

    该项目分别在DE1-SOC开发板的FPGA和HPS上实现了Dijkstra算法,能在中国铁路网中找到两站之间的最短距离和路线。
    的头像 发表于 04-09 11:10 585次阅读
    中国铁路网的Dijkstra<b class='flag-5'>算法</b><b class='flag-5'>实现</b>案例

    请问ST25RU3993-HPEV的自适应防碰撞算法是在板子上面实现的吗?

    请问ST25RU3993-HPEV的自适应防碰撞算法是在板子上面实现的?还是在STSW-ST25RU001上位机上面实现的?这个算法可否提供?STSW-ST25
    发表于 03-19 06:50

    AI算法的本质是模拟人类智能,让机器实现智能化

    电子发烧友网报道(文/李弯弯)AI算法是人工智能领域中使用的算法,用于模拟、延伸和扩展人的智能。这些算法可以通过机器学习、深度学习、强化学习等技术实现,并被广泛应用于语音识别、自然语言
    的头像 发表于 02-07 00:07 5753次阅读

    Camera算法集成实现指南

    最常见的双摄算法是双摄景深算法或者叫双摄背景虚化算法,除此之外,也有彩色+黑白用于增强夜拍效果的双摄算法。单帧算法和多帧
    的头像 发表于 01-25 15:12 1939次阅读

    如何使用SPU实现MUSIC或ESPRIT算法以获得超高分辨率?

    如何使用SPU实现MUSIC或ESPRIT算法以获得超高分辨率? 谢谢。
    发表于 01-23 07:59

    怎么用FPGA做算法 如何在FPGA上实现最大公约数算法

    FPGA算法的优点在于它们可以提供高度的定制化和灵活性,使得算法可以根据实际需求进行优化和调整。此外,FPGA还可以实现硬件加速,提供比传统处理器更高的计算性能和吞吐量。因此,FPGA算法
    的头像 发表于 01-15 16:03 2221次阅读