0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

计算机视觉领域开始在3D场景理解方面取得良好进展

Tensorflowers 来源:TensorFlow 作者:TensorFlow 2021-03-30 13:58 次阅读

过去几年里,3D 传感器(如激光雷达、深度传感摄像头和雷达)越发普及,对于能够处理这些设备所捕获数据的场景理解技术,相应需求也在不断增加。此类技术可以让使用这些传感器的机器学习 (ML) 系统,如无人驾驶汽车和机器人,在现实世界中导航和运作,并在移动设备上创建改进的增强现实体验。

最近,计算机视觉领域开始在 3D 场景理解方面取得良好进展,包括用于移动 3D 目标检测、透明目标检测等的模型,但由于可应用于 3D 数据的可用工具和资源有限,进入该领域本身可能具有挑战性。

为了进一步提高 3D 场景理解能力,降低感兴趣的研究人员的入门门槛,我们发布了 TensorFlow 3D (TF 3D),这一高度模块化的高效库旨在将 3D 深度学习功能引入 TensorFlow。TF 3D 提供了一组流行的运算、损失函数、数据处理工具、模型和指标,使更广泛的研究社区能够开发、训练和部署最先进的 3D 场景理解模型。

TF 3D 包含用于最先进 3D 语义分割、3D 目标检测和 3D 实例分割的训练和评估流水线,并支持分布式训练。它也可实现其他潜在应用,如 3D 目标形状预测、点云配准和点云密化。此外,它还提供了统一的数据集规范和配置,用于训练和评估标准 3D 场景理解数据集。目前支持 Waymo Open、ScanNet 和 Rio 数据集。不过,用户可以将 NuScenes 和 Kitti 等其他流行数据集自由转换为相似格式,并将其用于预先存在或自定义创建的流水线,也可以通过利用 TF 3D 进行各种 3D 深度学习研究和应用,包括快速原型设计以及试验新想法的方式来部署实时推断系统。

左侧

我们将介绍 TF 3D 提供的高效可配置的稀疏卷积主干,它是在各种 3D 场景理解任务上取得最先进结果的关键。此外,我们将分别介绍 TF 3D 目前支持的三种流水线:3D 语义分割、3D 目标检测和 3D 实例分割。

3D 稀疏卷积网络

传感器捕获的 3D 数据通常具有一个场景,其中包含一组感兴趣的目标(如汽车、行人等),其周围大多是有限(或无)兴趣的开放空间。因此,3D 数据本质上是稀疏的。在这样的环境下,卷积的标准实现将需要大量计算并消耗大量内存。因此,在 TF 3D 中,我们使用子流形稀疏卷积和池化运算,旨在更有效地处理 3D 稀疏数据。稀疏卷积模型是大多数户外自动驾驶(如 Waymo、NuScenes)和室内基准(如 ScanNet)中应用的最先进方法的核心。

我们还使用多种 CUDA 技术来加快计算速度(例如,哈希处理、在共享内存中分区/缓存过滤器,以及使用位运算)。Waymo Open 数据集上的实验表明,该实现比使用预先存在的 TensorFlow 运算的精心设计实现快约 20 倍。

TF 3D 然后使用 3D 子流形稀疏 U-Net 架构为每个体素 (Voxel) 提取特征。通过让网络同时提取粗略特征和精细特征并将其组合以进行预测,事实证明 U-Net 架构是有效的。U-Net 网络包括编码器、瓶颈和解码器三个模块,每个模块都由许多稀疏卷积块组成,并可能进行池化或解池化运算。

8a984f3a-8e0a-11eb-8b86-12bb97331649.png

3D 稀疏体素 U-Net 架构。请注意,水平箭头接收体素特征并对其应用子流形稀疏卷积。下移箭头执行子流形稀疏池化。上移箭头将回收池化的特征,与来自水平箭头的特征合并,并对合并后的特征进行子流形稀疏卷积

上述稀疏卷积网络是 TF 3D 中提供的 3D 场景理解流水线的主干。下面描述的每个模型都使用此主干网络提取稀疏体素的特征,然后添加一个或多个附加预测头来推断感兴趣的任务。用户可以更改编码器/解码器层数和每层中卷积的数量以及修改卷积过滤器的大小来配置 U-Net 网络,从而通过不同的主干配置探索大范围的速度/准确率权衡。

3D 语义分割

3D 语义分割模型只有一个输出头,用于预测每个体素的语义分数,语义分数映射回点以预测每个点的语义标签

3D 实例分割

在 3D 实例分割中,除了预测语义外,目标是将属于同一目标的体素归于一组。TF 3D 中使用的 3D 实例分割算法基于我们先前的使用深度指标学习的 2D 图像分割研究工作。该模型预测每个体素的实例嵌入向量以及每个体素的语义分数。实例嵌入向量将体素映射到一个嵌入向量空间,其中对应同一目标实例的体素靠得很近,而对应不同目标的体素则相距很远。在这种情况下,输入是点云而不是图像,并使用 3D 稀疏网络而不是 2D 图像网络。在推断时,贪婪的算法每次挑选一个实例种子,并使用体素嵌入向量之间的距离将其分组为段。

3D 目标检测

3D 目标检测模型预测每个体素的大小、中心、旋转矩阵以及目标语义分数。在推断时,采用盒建议机制 (Box proposal mechanism) 将成千上万的各体素的盒预测减少为几个准确的盒建议,然后在训练时,将盒预测和分类损失应用于各体素的预测。我们对预测和基本事实盒顶角之间的距离应用 Huber 损失。由于从其大小、中心和旋转矩阵估计盒顶角的函数是可微的,因此损失将自动传播回这些预测的目标属性。我们采用动态盒分类损失,将与基本事实强烈重合的盒分类为正,将不重合的盒分类为负。

在我们最近的论文《DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes》中,我们详细描述了 TF 3D 中用于目标检测的单阶段弱监督学习算法。此外,在后续工作中,我们提出基于 LSTM 的稀疏多帧模型,扩展了 3D 目标检测模型以利用时间信息。我们进一步证明,在 Waymo Open 数据集中,这种时间模型比逐帧方法的性能高出 7.5%。

DOPS 论文中介绍的 3D 目标检测和形状预测模型。3D 稀疏 U-Net 用于提取每个体素的特征向量。目标检测模块使用这些特征建议 3D 盒和语义分数。同时,网络的另一个分支预测形状嵌入向量,用于输出每个目标的网格

致谢

TensorFlow 3D 代码库和模型的发布是 Google 研究人员在产品组的反馈和测试下广泛合作的结果。我们要特别强调 Alireza Fathi 和 Rui Huang(在 Google 期间完成的工作)的核心贡献,另外还要特别感谢 Guangda Lai、Abhijit Kundu、Pei Sun、Thomas Funkhouser、David Ross、Caroline Pantofaru、Johanna Wald、Angela Dai 和 Matthias Niessner。

原文标题:TensorFlow 3D 助力理解 3D 场景!

文章出处:【微信公众号:TensorFlow】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2548

    文章

    50749

    浏览量

    752154
  • 3D
    3D
    +关注

    关注

    9

    文章

    2864

    浏览量

    107342

原文标题:TensorFlow 3D 助力理解 3D 场景!

文章出处:【微信号:tensorflowers,微信公众号:Tensorflowers】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    计算机视觉有哪些优缺点

    计算机视觉作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像和视频中的信息。这一技术的发展不仅推动了多个行业的变革,也
    的头像 发表于 08-14 09:49 751次阅读

    计算机视觉与机器视觉的区别与联系

    随着人工智能技术的飞速发展,计算机视觉和机器视觉作为该领域的两个重要分支,逐渐引起了广泛关注。尽管两者名称上有所相似,但实际上它们
    的头像 发表于 07-10 18:24 1314次阅读

    计算机视觉的工作原理和应用

    计算机视觉(Computer Vision,简称CV)是一门跨学科的研究领域,它利用计算机和数学算法来模拟人类视觉系统对图像和视频进行识别、
    的头像 发表于 07-10 18:24 1685次阅读

    机器人视觉计算机视觉的区别与联系

    机器人视觉计算机视觉是两个密切相关但又有所区别的领域。 1. 引言 在当今科技迅猛发展的时代,机器人和计算机
    的头像 发表于 07-09 09:27 597次阅读

    计算机视觉与人工智能的关系是什么

    引言 计算机视觉是一门研究如何使计算机能够理解和解释视觉信息的学科。它涉及到图像处理、模式识别、机器学习等多个
    的头像 发表于 07-09 09:25 532次阅读

    计算机视觉与智能感知是干嘛的

    引言 计算机视觉(Computer Vision)是一门研究如何使计算机能够理解和解释视觉信息的学科。它涉及到图像处理、模式识别、机器学习等
    的头像 发表于 07-09 09:23 822次阅读

    计算机视觉和机器视觉区别在哪

    计算机视觉和机器视觉是两个密切相关但又有明显区别的领域。 一、定义 计算机视觉
    的头像 发表于 07-09 09:22 410次阅读

    计算机视觉和图像处理的区别和联系

    计算机视觉和图像处理是两个密切相关但又有明显区别的领域。 1. 基本概念 1.1 计算机视觉 计算机
    的头像 发表于 07-09 09:16 1164次阅读

    计算机视觉人工智能领域有哪些主要应用?

    计算机视觉是人工智能领域的一个重要分支,它主要研究如何让计算机能够像人类一样理解和处理图像和视频数据。
    的头像 发表于 07-09 09:14 1202次阅读

    计算机视觉属于人工智能吗

    属于,计算机视觉是人工智能领域的一个重要分支。 引言 计算机视觉是一门研究如何使计算机具有
    的头像 发表于 07-09 09:11 1183次阅读

    深度学习计算机视觉领域的应用

    随着人工智能技术的飞速发展,深度学习作为其中的核心技术之一,已经计算机视觉领域取得了显著的成果。计算机
    的头像 发表于 07-01 11:38 686次阅读

    机器视觉计算机视觉的区别

    很多方面有着相似之处,如基础理论、技术框架等,但它们在学科分类、应用领域、侧重点等方面存在明显的区别。本文将对机器视觉计算机
    的头像 发表于 06-06 17:24 1255次阅读

    计算机视觉的主要研究方向

    计算机视觉(Computer Vision, CV)作为人工智能领域的一个重要分支,致力于使计算机能够像人眼一样理解和解释图像和视频中的信息
    的头像 发表于 06-06 17:17 859次阅读

    计算机视觉的十大算法

    随着科技的不断发展,计算机视觉领域取得了长足的进步。本文将介绍计算机视觉
    的头像 发表于 02-19 13:26 1210次阅读
    <b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的十大算法

    计算机视觉:AI如何识别与理解图像

    计算机视觉是人工智能领域的一个重要分支,它致力于让机器能够像人类一样理解和解释图像。随着深度学习和神经网络的发展,人们对于如何让AI识别和理解
    的头像 发表于 01-12 08:27 1362次阅读
    <b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>:AI如何识别与<b class='flag-5'>理解</b>图像