0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅谈预测性维护在智能工厂的应用与优势

jf_f8pIz0xS 来源:网络安全技术与应用 作者:网络安全技术与应 2021-04-14 15:34 次阅读

制造业中的维护和可靠性专业人员面临许多挑战,但是任何维护组织的目标始终是相同的:最大化资产可用性。所谓资产,简而言之就是固定资产,即车间中将原材料变成成品的机器。

如今,不良的维护策略可能会使工厂的整体生产能力降低5%至20%。最近的研究还表明,计划外的停机时间每年给工业制造商造成的损失估计为500亿美元。这引出了一个问题:“一台机器使用多久之后需要下线维修?”传统上,这种困境迫使大多数维护组织陷人一种折中的局面,他们不得不在最大化零件的使用寿命或者通过尽早更换可能的零件来最大化正常运行的时间二者之间进行选择。基于时间的预防性维护已证明对大多数设备组件无效。

通常,通过运行工具或机器组件直到它们失效,可以最大程度地利用它们。但是随着零件开始振动,过热和破裂,这可能会导致灾难性的机器损坏。而且,尽管对于某些资产而言,运行失败可能是一种可接受的方法,但计划外停机几乎总是更昂贵且更耗时间进行纠正。相反,您可能会考虑更频繁地更换零件和维修设备。但这不仅会随着时间的流逝而增加更换成本,还会增加计划内的停机时间和运营中断。

备件管理提出了类似的挑战,感觉就像是持续不断的平衡行为。在预算有限的情况下,维护专业人员必须评估所需的零件以及何时购买它们。如果在需要时没有备件或订购备件,则在等待更换零件时,资产的停机时间可能为数天至数周甚至数月之久[1]。这通常会导致备件库存的积累,这不仅占用了营运资金,而且增加过多和过时的风险。

预测性维护(PdM)旨在通过授权公司最大程度地延长零件的使用寿命,同时避免计划外的停机时间并最大程度地减少计划内的停机时间来打破这些折衷。随着用于制造业的工业4.0的出现,公司能够利用新技术来实时监视和深入了解其运营,从而将典型的制造工厂转变为智能工厂。简而言之,智能工厂就是配备了能够使机器对机器(M2M)和机器对人(M2H)通信与分析和认知技术相结合的技术,从而使我们可以正确,及时地做出决策。

PdM(已经在我们耳边萦绕多年)利用多源数据,例如关键设备传感器,企业资源计划(ERP)系统,计算机化维护管理系统(CMMS)和生产数据。智能工厂管理系统将此数据与高级预测模型和分析工具结合在一起,以预测故障并主动解决。此外,随着时间的流逝,新的机器学习技术可以提高预测算法的准确性,从而带来更好的性能。

相比之下,传统的预防性维护(PM)程序通常需要非常耗时的手动数据处理和分析,才能从收集的数据中获得真正的洞察力。尽管许多人在这些策略上取得了一些成功,但它们通常严重依赖于经验进行估计,或者需要深度知识和对每台独立设备的不断分析,以保持准确性。

为了实现最大化机器可用性的维护目标,著名的德勤公司甚至确定了在工业4.0时代[2]运营的所有制造公司的两个主要业务目标:1)经营业务;2)增长业务。

一般增长业务聚焦于业务上线的增长,而经营业务则旨在消减成本。PdM技术可以从多个来源和旧系统中提取数据,以提供实时的高级见解,从而使计算机系统可以轻松地进行日常工作,从而使维护管理人员可以更有效地部署资源。

01 技术探索

根据设计或默认情况,跨行业的维护组织处于不同的成熟阶段。有些可能正在基于估计或OEM建议进行定期维护检查,而其他一些可能会使用针对每种固定资产量身定制的基于统计的程序。但是,其他一些公司,尤其是航空航天和能源领域的公司,已经在对其资产进行连续监视技术,但是可能仅监视数据的输出,而不是利用先进的预测模型。

像其他任何事情一样,从预防性维护和以可靠性为中心的维护的一些基础开始,同时采取一两个合适的资产试行PdM,就存在着朝着可靠性优化的方向迈出的步骤。这些试点之一的主要资产应该是运营不可或缺的组成部分,并且必须以一定的规律性失败才能创建基线预测算法。

现在,PdM的想法听起来很诱人。但是它如何工作?组成智能工厂的许多技术不一定是新技术,而是变得更实惠,更健壮,更先进,并且已集成到业务中。与20年前相比,计算、存储和网络带宽现在都只花费几分之一,这使试点和扩展在财务上可行。

让我们探究组成智能工厂并使PdM成为可能的一些技术。

02 物联网

物联网(IoT)可能是PdM难题中最大的部分。我们所知道的互联网已将您的笔记本电脑和移动设备连接到大型服务器场,这些服务器场中充满了用HTML编码的网站数据。物联网类似,但是数据是从资产到企业服务器的连续流。物联网使用温度,振动或电导率等传感器将机器的物理动作转换为数字信号。数据还可以从其他来源流式传输,例如机器的可编程逻辑控制器PLC),制造执行系统(MES)终端,CMMS甚至是ERP系统。物联网完成了“物理到数字再到物理(P-D-P)”这个循环的前半部分(如图1所示)。这种智能工厂概念是在德勤关于“数字供应网络的兴起”的讨论中引入的。一旦通过传感器将物理动作转换为数字信号,即可对其进行处理,汇总和分析。凭借价格合理的带宽和存储能力,可以传输大量数据,从而不仅可以全面了解单个工厂中的资产情况,还可以显示整个生产网络。

pIYBAGB2nRWAU24MAAGFpZVAZvs933.png

图一: P-D-P循环

03 分析与可视化

P-D-P循环的第二步是使用高级分析和预测算法分析和可视化数字信号。高级商业智能(BI)工具不再仅适用于数据科学家。许多分析平台已开始为非结构化数据,认知技术、机器学习和可视化集成高级解决方案。与生产过程有更多联系的运营分析师可以使用专门为日常用户创建的现代API(应用程序接口)轻松创建仪表板。

另一个趋势是数据移回边缘。与在使用点存储工具的精益技术类似,数据计算将在“边缘”进行,这意味着它在生成它的机器上进行处理。结果可以直接传达给机器操作员和维护技术人员。随着数据开始接近ZB量级,边缘计算通过将一些处理工作分配给网络的外部节点来减轻核心网络流量并提高应用程序性能,从而减轻了计算机网络的总体负担。

04 闭环P-D-P循环

最后,在对信号进行处理,分析和可视化之后,是时候将这些结果转化为实际行动了。在某些情况下,得出的数字结论可能会指示机器人或机器更改其功能。在其他情况下,维护警报将促使技术人员采取行动。考虑一种情况,在这种情况下,预测算法将触发公司CMMS系统中维护工作订单的创建,检査ERP系统中是否有备用零件,并自动为任何所需的其他零件创建采购请求。然后,维护经理只需批准工作流中的项目并派遣适当的技术人员,这些操作都是自动化的,并且可以在计划外停机之前执行。

05 潜在优势

思考之初,挑战似乎难以克服。但是,数字化转型的好处远大于风险。这些好处包括:

1)节省物料成本(运营和MRO物料支出中的5-10%);

2)降低存货成本;

3)设备正常运行时间和可用性增加(10-20%);

4)减少维护计划时间(20-50%);

5)降低了总体维护成本(5%至10%);

6)改进的HS&E合规性;

7)减少花费在暴力信息提取和验证上的时间;

8)花更多的时间在数据驱动的问题解决上;

9)与计划,绩效和责任制的明确联系;

10)对数据和信息更有信心,从而拥有决策权。

智能工厂和PdM是未来,并且选择是无止境的。
编辑:lyn

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 物联网
    +关注

    关注

    2909

    文章

    44671

    浏览量

    373642
  • PDM
    PDM
    +关注

    关注

    2

    文章

    98

    浏览量

    17886
  • 智能工厂
    +关注

    关注

    3

    文章

    1002

    浏览量

    42417
  • 预测性维护
    +关注

    关注

    1

    文章

    43

    浏览量

    3461
收藏 人收藏

    评论

    相关推荐

    设备管理系统:智能工厂设备管理系统的优势

    智能工厂设备管理系统的崛起为现代工业带来显著效益,发展趋势包括融合云计算、大数据、物联网等技术提高智能化和自动化水平;实现个性化设备使用分析和预测;优化系统操作界面和业务流程,提升易用
    的头像 发表于 09-06 10:45 545次阅读
    设备管理系统:<b class='flag-5'>智能</b><b class='flag-5'>工厂</b>设备管理系统的<b class='flag-5'>优势</b>

    工业数据采集平台预测维护中的作用

    加工制造、钢铁冶金、石油化工等工业领域,各种生产设备是企业的重要战略资产。当前大多数企业的设备管理工作中,如何确保设备运行安全稳定是维护持续性生产秩序的重要前提。但设备结构复杂,维护工作往往费时
    的头像 发表于 08-07 17:18 285次阅读

    设备预测维护策略与方案建设

    工作?预测维护必不可少。 设备维护是指通过一系列工作使发生故障的设备恢复到正常运转的技术活动,包含各种计划内、外的故障及事故修理。设备维修基本内容包括设备的
    的头像 发表于 07-08 10:40 410次阅读
    设备<b class='flag-5'>预测</b><b class='flag-5'>性</b><b class='flag-5'>维护</b>策略与方案建设

    工业大数据云平台设备预测维护中的作用

    ,只有保证设备的安全稳定运行才能保障生产的持续,质量的可靠,提升企业产品竞争力。 因此,企业就需要加强对设备状况的及时把握,并一定程度上实现工业设备预测维护。为此,数之能提供的工业大数据云平台可以全面接入
    的头像 发表于 06-28 15:31 256次阅读

    智能工厂优势不包括哪些

    智能工厂是一种高度自动化、信息化、智能化的生产模式,它通过先进的信息技术、自动化设备、物联网技术等手段,实现生产过程的自动化、智能化、网络化和绿色化。
    的头像 发表于 06-07 15:28 1000次阅读

    智能传感器与故障诊断系统助力真空泵设备预测维护

    维护成本。真空泵维护过程中遇到的常见故障问题包括:频繁漏气问题、性能衰减难以预测、诊断复杂度高、维护成本高昂、自动化和
    的头像 发表于 06-03 15:48 532次阅读
    <b class='flag-5'>智能</b>传感器与故障诊断系统助力真空泵设备<b class='flag-5'>预测</b><b class='flag-5'>性</b><b class='flag-5'>维护</b>

    智能工厂(物联网工厂)是什么

    智能工厂(物联网工厂)是一种高度自动化、互联化的制造系统,它集成了先进的信息技术和工业自动化技术,能够实时监控、优化和调整生产过程。智能
    的头像 发表于 06-03 09:16 817次阅读

    钢铁工厂故障监测告警与预测维护如何实现

    维护往往设备故障停机滞后进行维护,无法及时发现设备的异常,更不能提前维护从而避免设备故障的出现。因此这两种模式已无法满足当下钢铁企业对设备的维护
    的头像 发表于 05-21 10:56 320次阅读
    钢铁<b class='flag-5'>工厂</b>故障监测告警与<b class='flag-5'>预测</b><b class='flag-5'>性</b><b class='flag-5'>维护</b>如何实现

    ZETA端智能✖红牛:助力国际饮料巨头实现生产设备预测维护

    为了更好地实现设备的预测维护,红牛泰国等地的工厂选择了基于ZETA端智能
    的头像 发表于 04-22 10:53 377次阅读
    ZETA端<b class='flag-5'>智能</b>✖红牛:助力国际饮料巨头实现生产设备<b class='flag-5'>预测</b><b class='flag-5'>性</b><b class='flag-5'>维护</b>

    如何实现PLC自动化设备的预测维护

    定期检查和故障排除,然而这种方式不仅耗时费力,而且无法真正做到预防维护。因此,我们需要思考如何借助先进的技术手段来实现PLC自动化设备的预测
    的头像 发表于 04-02 13:33 416次阅读
    如何实现PLC自动化设备的<b class='flag-5'>预测</b><b class='flag-5'>性</b><b class='flag-5'>维护</b>

    基于设备监控运维管理平台实现预测维护

    制造业领域,预测维护计划的应用越来越普遍,成为越来越多企业的必然需求。实现预测
    的头像 发表于 03-15 11:24 582次阅读
    基于设备监控运维管理平台实现<b class='flag-5'>预测</b><b class='flag-5'>性</b><b class='flag-5'>维护</b>

    浅谈智能变电站运维管理平台的安全与设备维护

    浅谈智能变电站运维管理平台的安全与设备维护 张颖姣 安科瑞电气股份有限公司 上海嘉定 201801 摘要:电力中国的能源消费中占有重要地位。随着中国经济高质量发展的转型升级,清洁能源
    的头像 发表于 03-13 09:11 323次阅读
    <b class='flag-5'>浅谈</b><b class='flag-5'>智能</b>变电站运维管理平台的安全与设备<b class='flag-5'>维护</b>

    NanoEdge AI的技术原理、应用场景及优势

    工业生产过程中,NanoEdge AI 可以帮助实现对生产线的实时监控和故障预测,提高生产效率和降低维护成本。 3.智能交通:通过将 NanoEdge AI 应用于交通信号灯、无人
    发表于 03-12 08:09

    为什么振动监测对物联网预测维护至关重要

    提前预测和预防严重故障的能力,有望大大提高设备的正常运行时间,同时降低维护成本。 持续状态监测预测
    的头像 发表于 03-04 11:13 381次阅读

    SCG客户应用ZETA预测维护方案,精准发现设备故障

    故障,从而提升工厂运营效率,降低管理成本。其中,SCG的一个客户通过采用ZETA预测维护方案精准提前发现了机器故障,为工厂设备
    的头像 发表于 01-23 10:38 382次阅读
    SCG客户应用ZETA<b class='flag-5'>预测</b><b class='flag-5'>性</b><b class='flag-5'>维护</b>方案,精准发现设备故障