0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅谈面向人脸表情识别的双模板稀疏分类方法

电子工程师 来源:电子技术应用第6期 作者:蒋行国;冯彬;韦 2021-05-05 00:05 次阅读

摘要:提出一种面向人脸表情识别的双模板稀疏分类方法(DT-SRC)。该算法在用训练样本组成观测矩阵的基础上,通过添加正、负双模板构造新的观测矩阵,最后使用稀疏表示分类(SRC)进行识别。分别在JAFFE和CK人脸库中进行验证,结果表明,该算法识别准确率高,比SRC有更好的性能。

近几年来,随着MA Y[1-2]等人提出了基于稀疏表示分类的人脸识别,掀起SRC在人脸识别领域应用的热潮。郝静静[3]等人提出一种改进的人脸识别方法,效果得到明显提高。SALAH R[4]等人结合纹理特征提取和稀疏表示实现人脸表情的识别。Zhang Shiqing[5]等人把Gabor小波和局部二值化(LBP)分别用于表情特征提取,评估稀疏表示分类(SRC)的性能,并与支持向量机(SVM)、NSC、NNC等进行了比较。

MAHOOR H[6]等人对人脸运动单元进行稀疏表示实现表情识别,并与SVM、NSC方法进行了比较。但表情特征相对于人脸特征复杂,表情样本少,加大了表情识别难度;直接运用SRC实现表情识别效果不是很好。邹修国[7]等人把人脸识别系统应用到DSP,为识别系统广泛应用奠定了基础。

针对上述识别方法的优缺点,本文提出双模板稀疏表示算法对人脸表情进行识别。通过增加正、负模板重构新的观测矩阵,优化了稀疏表示的性能,减少噪声、遮挡等对表情识别的影响,提高了表情的识别率。

1 基于稀疏表示的表情识别

1.1 稀疏表示理论

稀疏表示SR(sparse representation)可称为压缩感知,在很多领域扮演了越来越重要的角色。在式(1)中,稀疏表示理论的核心是在过完备矩阵D∈Rm×n下,重构出的

15168767514886.gif

逼近原信号x,可理解为求解方程的过程:

pIYBAGB3u4KAYuqdAAAH9uQGLH0372.png

在实际应用中,当m《

pIYBAGB3u5qAEcTBAAAQwgkfE9g002.png

但式(2)的求解过程是一个NP-hard问题,计算效率极低。参考文献[8]指出,在满足约束等距性RIP的条件下,最小l1范数解逼近最小l0范数解。所以,可以在解集合寻找最小范数解(min‖x‖1)来代替求min‖x‖0,这是一个凸优化问题,用式(3)表示:

15171639644633.gif

对于上述最优化问题,有许多l1算法[9]能够有效地求解,包括正交匹配追踪算法、LASSO、SPGL1算法等。

1.2 基于稀疏表示的表情识别算法

从表情库中随机取大部分人脸图像作为训练样本,用于构建测试样本对应的冗余字典。设第i类训练样本用矩阵表示为

15172070052364.gif

,每个图像用v来表示。将k类共n个训练样本组合在一起形成整个训练集矩阵D:

15172383778535.gif

其中,m表示样本的像素点,ni表示第i类样本数目。通过求解出测试人脸在由训练样本构成的字典里的表示,可以知道测试人脸的表情类别信息。给出一个属于第i类的测试样本y,可以表示为:

15172691718664.gif

测试样本仅用来表示自同一类训练样本的线性组合,其他类别的系数为零,即求解出的解x1=[0,0,…,0,

15172986246128.gif

],只有第i类的值是非0元素。系数向量a中包含大量有利于分类的信息。判断测试样本所属类别的公式为:

15173279215837.gif

其中δi(x1)∈Rn,是第i组系数中非零的数为系数x1中与i对应的那些数。ri(y)=‖y-Aδi(x1)‖2表示的是y与Aδi(x1)的残差值,认为残差值最小的对应类别i为y的类别。

2 双模板稀疏分类算法

实际应用中,训练样本个数和单样本的像素点影响原信号重构的效果。直接用训练样本来构造冗余字典D,重构效率很低。由于图像中含有噪声干扰,为了解决噪声的影响,式(1)改写为:

15175091014403.gif

其中,ε表示误差向量,它与稀疏解x一样含有大量的稀疏零点。因此,为了方便计算,把解x和ε合并起来,添加一个模板I去构造新的矩阵B,故y可以表示为:

15175779912567.gif

其中,B=[D,I]∈Rm×(n+m)。由于m《(m+n),所以方程(8)一直是欠定方程,ω的解并不唯一。把矩阵I用单位矩阵表示,I的向量ii∈Rm中只含一个非零数,用来表示图像中零散的噪声点。单模板I通过向量e帮助x分担原图像的零散噪声,使更多有用信息集中于向量x上。

原则上,观测矩阵D在没有限制的条件下,系数x可以为任何实数。然而,在识别的应用中,被识别的目标应该被训练样本用非负系数所表示。在训练样本库中,寻找到类似测试样本类别的个体时,主要集中于该类似样本的非负系数上。然而,直接对上述的辅助稀疏x、e进行非负约束不太合理。因此,本文在正模板的基础上提出了双模板的扩展矩阵。如图1所示,由训练样本矩阵、正模板和负模板共同构造双模板的观测矩阵。把测试样本中可能存在的负值转移到负模板,消除负系数对稀疏解x用于分类时的影响。此时,式(1)可写为:

o4YBAGB3u8-AB9XuAADReV_nrlE613.png

图1 双模板观测矩阵

其中,e+∈Rm,e-∈Rm分别为正辅助系数和负辅助系数向量,新观测矩阵

15177416519975.gif

Rn+2m是非负系数向量。此时,负模板-I中的每一列向量-ii只含有一个零值,与正模板的ii刚好相反,可以减少稀疏表示中对n的要求,解决样本数不够的问题。式(8)的矩阵B中m《2m+n,因此是欠定方程,且ω没有唯一的解。通过变换域把式(8)求解问题转化为l1-正则化最小平方问题,稀疏表达式表示为:

15178742528236.gif

其中‖·‖1和‖·‖2分别表示l1和l2范数。本文使用l1范数解法l1_ls求稀疏解x。然后把稀疏解x代入式(6),求出残差值,即可得到测试样本y对应的类别。

对于一个有效的测试人脸,所求的非零系数集中于单个训练目标。为了衡量观测矩阵的性能,参考文献[4]定义稀疏集中指数(SCI)来测量稀疏系数集中程度:

15179323323114.gif

如果

15179549205226.gif

则测试样本只用一个目标样本来表示;如果

15179734071343.gif

,则测试样本的稀疏表示均匀地分布在所有样本中。

15179932504281.gif

的值越大,说明求解的x稀疏性越好。本文将通过衡量SCI指数比较DT-SRC和SRC的性能。

3 实验及结果分析

3.1 JAFFE人脸数据库上的实验

对人脸库的图像进行几何归一化、灰度归一化、滤波等预处理。JAFFE人脸图像经过预处理后大小为64×64,如图2所示,从左到右依次为愤怒、厌恶、恐惧、开心、自然、伤心、惊奇7种表情。

pIYBAGB3vAiAfMERAADUDT2WqBE165.png

图2 KA的7种表情预处理后的图像

把JAFFE人脸库的210张图片按7种表情进行分类,每人每种表情随机抽取一个作为测试样本,其他为训练样本。对人脸图像进行下采样降维,针对SRC和DT-SRC算法选择最优的下采样率,采样点为15×7,比较NSC、SRC和DT-SRC的识别性能。

表1中平均SCI指数为统计70个测试人脸的每个SCI指数后求平均值,它能反映出稀疏表示分类的识别性能。从表1可以看出,DT-SRC相对SRC和NSC在识别率上有很大的提升,但牺牲了一定的时间;SRC和NSC的识别率差不多。

pIYBAGB3vCGAbns8AACHrx2wUAc778.png

图3中,SCI指数的范围为[0,1],指数越接近1,所求得的解越稀疏,稀疏性越好。从图3可以看出,在第12、50个测试样本时SCI都很低,可以认为这些样本类别不能很好地被识别,所含的表情分类信息不明显;DT-SRC的SCI指数普遍比SRC的高,则DT-SRC的重构效果比SRC有了很大的提高。

o4YBAGB3vDiAc740AAJ13_tcEW8336.png

图3 JAFFE的测试人脸在SRC、DT-SRC的SCI指数

本文取图3的第70个测试人脸图,列出该图在DT-SRC和SRC下的残差值,如图4所示。图4(a)为第70个人脸的裁剪图,图4(b)和图4(c)中的横坐标1~7分别表示愤怒、厌恶、恐惧、开心、自然、伤心、惊奇的7种表情。图4(b)、图4(c)的第7个方柱(惊奇)的残差值最低,可以判断出图4(a)的类别是惊奇,该人脸的表情是惊奇。

从图4可以看出,DT-SRC的第7类表情残差值相对其他类表情要明显,所求解的系数x在表情类别中主要集中于惊奇处。图4(b)中最低两个残差值的比例大约为1 400/100=14:1;图4(c)中最低两个残差值的比例大约为500/200=5:2;在该测试人脸的识别中,DT-SRC算法比SRC有更好的稀疏性和分类效果。

o4YBAGB3vGCAUlNWAAIKjCyXcT4016.png

图4 某个测试人脸的残差值图

3.2 在CK人脸数据库上的实验

3.1节实验同样适用于Cohn-Kanade(CK)表情库。选取裁剪成64×64的CK人脸库作为实验数据库,把其中一人的7种表情显示如图5所示,从左到右依次为厌恶、恐惧、开心、自然、伤心、惊奇、愤怒7种表情。

o4YBAGB3vIWAe3y5AAC7RWMOHAU349.png

图5 CK的7种表情预处理后的图像

CK库有18个人,每个人每种表情有5张,有7种表情,共有630张图像。每人每种表情随机抽取一个作为测试样本,其他为训练样本,则总有126张测试样本、504张训练样本。然后比较NSC、SRC、ISRC 3种算法的识别率,实验结果如表2所示。计算每张CK测试人脸在SRC、DT-SRC识别后的SCI指数,126张测试人脸的SCI指数如图6所示。

pIYBAGB3vKKAeJ-TAALOy_74i3M378.png

图6 CK的测试人脸在SRC、DT-SRC的SCI指数

分析表1和表2可知,SRC和NSC在识别时间上比其他方法有绝对的优势,而且识别率也较好。在CK库中的识别率明显比JAFFE库好,这是因为所使用的CK库的图片质量好,各表情差异明显。DT-SRC比SRC和NSC在识别率方面有所提高,特别是在图片表情特征不明显的情况下,识别率能有很大的提高。其实,在CK库中所使用训练样本比较多,SRC算法能达到很高的识别率。

但在JAFFE库里,由于表情库的样本不多,导致字典D的列数不够,不能充分发挥出稀疏表示的作用,从而导致它的识别率低。而本文的算法DT-SRC弥补了字典矩阵D列数不足的缺点,且降低了噪声和负系数的影响,使识别率得到提高,但牺牲了一定的运算时间。

从图3和图6的SCI指数图看出,DT-SRC的SCI总体上比SRC的高,DT-SRC的稀疏表示性比SRC的好。当测试样本不是有效的人脸时,DT-SRC能更好地排除该张图片,减少错误的判断。

本文提出的DT-SRC实用性强、效率高,降低了识别的复杂度,解决了SRC用于表情识别时效率不高的问题。通过SRC与DT-SRC的比较,发现字典矩阵D的构造影响着正确识别率和稀疏分类性能,D中的元素能最大程度地表示测试样本的结构,且所添加的正、负模板可消除噪声、负系数等影响。因此,DT-SRC在表情识别方面效果不错。

参考文献

[1] WRIGHT J, YANG A Y, MA Y,et al. Robust face recognition via sparse representation[J]。 Pattern Analysis and Machine Intelligence, 2009,31(2):210-217.

[2] JIA K,CHAN T H,MA Y. Robust and practical face recognition via structured sparsity[C]。 European Conference on Computer Vision(ECCV), 2012:331-344.

[3] 郝静静,李莉。一种基于KPCA与LDA的人脸识别改进算法[J]。电子技术应用,2013,39(12):132-134.

[4] SALAH R, KHOLY A E, YOUSSRI M. Robust facial expression recognition via sparse repre-

sentation and multiple gabor filters[J].International Journal of Advanced Computer Sciences and Applications, 2013,4(3):82-87.

[5] Zhang Shiqing, Zhao Xiaoming, Lei Bicheng. Robust facial expression recognition via compressive sensing[J].Sensors, 2012,12(12):3747-3761.

[6] MAHOOR H, ZHOU M, KEVIN L,et al. Facial action unit recognition with sparse representation[C].Automatic Face & Gesture Recognition and Workshops(FG2011), 2011:336-342.

[7] 邹修国, 李林, 陆静霞。 基于DSP的人脸HU矩识别研究[J]。电子技术应用,2013,38(11):150-153.

[8] CAND?魬S E J, WAKIN M B. An introduction to compressive sampling[J]。 Signal Processing Magazine,2008,25(2):21-30.

[9] YANG A, GANESH A, MA Y,et al. Fast L1-minimization algorithms for robust face recognition[J]。 IEEE Transactions on Image Processing(TIP), 2013,22(8):3234-3246.

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SVM
    SVM
    +关注

    关注

    0

    文章

    154

    浏览量

    32375
  • 人脸识别
    +关注

    关注

    76

    文章

    4002

    浏览量

    81661
  • SRC
    SRC
    +关注

    关注

    0

    文章

    60

    浏览量

    17945
  • NNC-
    +关注

    关注

    0

    文章

    2

    浏览量

    21118
收藏 人收藏

    评论

    相关推荐

    开源六轴协作机器人myCobot 320结合人脸表情识别情绪!

    与众不同的功能。通过结合人脸表情识别技术,我们可以让机械臂感知到我们的情绪变化。当我们开心时,机械臂可以跟着一起开心地舞动;当我们伤心难过时,它可以过来安慰我们,给予温暖的抚摸。这种基于表情
    的头像 发表于 08-12 15:21 827次阅读
    开源六轴协作机器人myCobot 320结合<b class='flag-5'>人脸</b><b class='flag-5'>表情</b><b class='flag-5'>识别</b>情绪!

    人脸识别技术的可行性在于矛盾具有什么性

    矛盾的普遍性角度,探讨人脸识别技术的可行性,并分析其在实际应用中所面临的矛盾和问题。 二、人脸识别技术概述 人脸
    的头像 发表于 07-04 09:28 406次阅读

    人脸识别技术的优缺点有哪些

    人脸识别技术是一种基于人脸特征信息进行身份识别的生物识别技术。随着计算机视觉、深度学习等技术的发展,人脸
    的头像 发表于 07-04 09:25 1689次阅读

    人脸识别技术将应用在哪些领域

    人脸识别技术是一种基于人脸特征信息进行身份识别的生物识别技术。随着科技的发展,人脸
    的头像 发表于 07-04 09:24 2203次阅读

    人脸识别技术的原理介绍

    人脸识别技术是一种基于人脸特征信息进行身份识别的生物识别技术。它通过分析人脸图像,提取
    的头像 发表于 07-04 09:22 1009次阅读

    如何设计人脸识别的神经网络

    人脸识别技术是一种基于人脸特征信息进行身份识别的技术,广泛应用于安全监控、身份认证、智能门禁等领域。神经网络是实现人脸
    的头像 发表于 07-04 09:20 494次阅读

    人脸识别模型训练是什么意思

    人脸识别模型训练是指通过大量的人脸数据,使用机器学习或深度学习算法,训练出一个能够识别分类人脸
    的头像 发表于 07-04 09:16 426次阅读

    人脸检测和人脸识别的区别是什么

    检测和人脸识别的区别。 定义 人脸检测是指在图像或视频中快速准确地找到人脸的位置,并将其从背景中分离出来的技术。人脸检测的目的是确定图像中是
    的头像 发表于 07-03 14:49 824次阅读

    人脸检测与识别的方法有哪些

    人脸检测与识别是计算机视觉领域中的一个重要研究方向,具有广泛的应用前景,如安全监控、身份认证、智能视频分析等。本文将详细介绍人脸检测与识别的方法
    的头像 发表于 07-03 14:45 594次阅读

    请问esp who人脸识别的脸部信息如何保存在sd卡中?

    esp who人脸识别的脸部信息如何保存在sd卡中?
    发表于 06-28 08:09

    人脸识别终端 10寸人脸

    终端人脸识别
    深圳市远景达物联网技术有限公司
    发布于 :2024年04月22日 16:01:46

    语音识别的技术历程及工作原理

    语音识别的本质是一种基于语音特征参数的模式识别,即通过学习,系统能够把输入的语音按一定模式进行分类,进而依据判定准则找出最佳匹配结果。
    的头像 发表于 03-22 16:58 2670次阅读
    语音<b class='flag-5'>识别的</b>技术历程及工作原理

    人脸识别技术的原理是什么 人脸识别技术的特点有哪些

    人脸检测是人脸识别的首要步骤。其目标是在图像或视频中准确地定位人脸的位置。人脸检测算法常用的方法
    的头像 发表于 02-18 13:52 1559次阅读

    情感语音识别的挑战与未来趋势

    。 二、情感语音识别的挑战 情感表达的复杂性:人类的情感表达非常复杂,不仅涉及到语音的音调、音色和音量等,还与语言表达、肢体动作、面部表情等多个方面有关。准确识别和理解这些复杂情感表达的难度非常大。 语音信号的质
    的头像 发表于 11-30 11:24 482次阅读

    情感语音识别的研究方法与实践

    一、引言 情感语音识别是指通过计算机技术和人工智能算法自动识别和理解人类语音中的情感信息。为了提高情感语音识别的准确性,本文将探讨情感语音识别的研究
    的头像 发表于 11-16 16:26 800次阅读