0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何在TensorFlow2里使用Keras API创建一个自定义CNN网络?

电子工程师 来源:XILINX技术社区 作者:张超 2021-04-15 11:36 次阅读

概述

本示例工程中我们会在 TensorFlow2 下使用 Keras API 创建一个自定义 CNN 网络,在 Vitis-AI 1.3 环境下编译成 Xilinx DPU 上运行的模型文件,并在 Xilinx zynqMP 上部署运行。

该示例工程应在 Vitis-AI1.3 Docker,vitis-ai-tensorflow2conda 环境中运行。

有关Mnist手写数字数据集,请参见http://yann.lecun.com/exdb/mnist/。

在该例程中我们会演示以下的步骤:

使用 TensorFlow2 训练和评估小型自定义卷积神经网络

对浮点模型进行量化 (quantization)

对量化模型进行评估

使用校准数据集对训练后的模型进行微调 (finetuning)

编译量化和微调的模型,以创建 .xmodel 文件,准备在 DPU 加速器 IP 上执行在 zynqMP 评估板上下载并运行该模型

代码说明

可从下面的 github 页面获得源码。

https://github.com/lobster1989/Mnist-classification-Vitis-AI-1.3-TensorFlow2

Python 及 Shell 脚本源码说明如下:

load_data.py:下载 Mnist 数据集;

generate_images.py:从 Keras 在线数据集生成本地图像文件;

train.py:创建和训练用于 Mnist 分类的简单 CNN 模型, 经过训练的浮点模型将被保存到本地;

quantize.py:使用 VitisQuantizer 量化前一个步骤保存的浮点模型,量化后的模型将被保存到本地;

eval_quantized.py:评估量化模型的 accuracy;

finetune.py:利用 Vitis-AI 进行模型微调(仅作演示,后续编译部署的为 quantize 步骤保存的模型);

compile_zcu102.sh/compile_zcu104.sh:启动 vai_c_tensorflow2 命令以将量化或微调的模型编译为供 DPU 运行的 .xmodel 文件。两个文件分别对应目标为 zcu102 和 zcu104 开发板;

make_target_zcu102.sh/make_target_zcu104.sh:将.xmodel和图像复制到 。/target_zcu10x 文件夹中,准备好将其复制到 zcu102/zcu104 评估板的 SD 卡中。

模型创建/量化/编译

在运行此部分之前,我们应在 Vitis-AI docker 环境下激活 vitis-ai-tensorflow2anaconda 环境。有关更多详细信息,请参阅最新版本的 UG1414。

(vitis-ai-tensorflow2) Vitis-AI /workspace/myproj/tf2-mnist-end-to-end 》 python train.py

Load Mnist dataset.。

Create custom cnn.。

Model: “mnist_customcnn_model”

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 28, 28, 1)] 0

_________________________________________________________________

conv2d (Conv2D) (None, 26, 26, 32) 320

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0

_________________________________________________________________

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0

_________________________________________________________________

conv2d_2 (Conv2D) (None, 3, 3, 64) 36928

_________________________________________________________________

flatten (Flatten) (None, 576) 0

_________________________________________________________________

dense (Dense) (None, 64) 36928

_________________________________________________________________

dense_1 (Dense) (None, 10) 650

=================================================================

Total params: 93,322

Trainable params: 93,322

Non-trainable params: 0

_________________________________________________________________

Fit on dataset.。

Epoch 1/10

782/782 [==============================] - 13s 16ms/step - loss: 0.1843 - accuracy: 0.9427 - val_loss: 0.0701 - val_accuracy: 0.9813

Epoch 2/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0529 - accuracy: 0.9835 - val_loss: 0.0543 - val_accuracy: 0.9855

Epoch 3/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0346 - accuracy: 0.9894 - val_loss: 0.0472 - val_accuracy: 0.9877

Epoch 4/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0252 - accuracy: 0.9929 - val_loss: 0.0463 - val_accuracy: 0.9878

Epoch 5/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0188 - accuracy: 0.9945 - val_loss: 0.0494 - val_accuracy: 0.9896

Epoch 6/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0147 - accuracy: 0.9956 - val_loss: 0.0513 - val_accuracy: 0.9901

Epoch 7/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0121 - accuracy: 0.9966 - val_loss: 0.0452 - val_accuracy: 0.9920

Epoch 8/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0096 - accuracy: 0.9973 - val_loss: 0.0542 - val_accuracy: 0.9906

Epoch 9/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0088 - accuracy: 0.9976 - val_loss: 0.0640 - val_accuracy: 0.9893

Epoch 10/10

782/782 [==============================] - 5s 7ms/step - loss: 0.0073 - accuracy: 0.9978 - val_loss: 0.0709 - val_accuracy: 0.9893

Save trained model to./models/float_model.h5.

Evaluate model on test dataset.。

157/157 [==============================] - 1s 3ms/step - loss: 0.0426 - accuracy: 0.9911

loss: 0.043

acc: 0.991

(vitis-ai-tensorflow2) Vitis-AI /workspace/myproj/tf2-mnist-end-to-end 》 python quantize.py

Load float model.。

Load Mnist dataset.。

Run quantization.。

[INFO] Start CrossLayerEqualization.。.

10/10 [==============================] - 0s 32ms/step

[INFO] CrossLayerEqualization Done.

[INFO] Start Quantize Calibration.。.

157/157 [==============================] - 12s 77ms/step

[INFO] Quantize Calibration Done.

[INFO] Start Generating Quantized Model.。.

[Warning] Skip quantize pos adjustment for layer quant_dense, its quantize pos is [i=None, w=8.0, b=9.0, o=3.0]

[INFO] Generating Quantized Model Done.

Saved quantized model as 。/models/quantized_model.h5

(vitis-ai-tensorflow2) Vitis-AI /workspace/myproj/tf2-mnist-end-to-end 》 python eval_quantized.py

Load quantized model.。

WARNINGNo training configuration found in the save file, so the model was *not* compiled. Compile it manually.

Load Mnist dataset.。

Compile model.。

Evaluate model on test Dataset

157/157 [==============================] - 4s 22ms/step - loss: 0.0417 - accuracy: 0.9913

loss: 0.042

acc: 0.991

(vitis-ai-tensorflow2) Vitis-AI /workspace/myproj/tf2-mnist-end-to-end 》 python finetune.py

Load float model.。

Load Mnist dataset.。

Create quantize training model.。

[INFO] Start CrossLayerEqualization.。.

10/10 [==============================] - 0s 33ms/step

[INFO] CrossLayerEqualization Done.

Compiling model.。

Fit on Dataset.。

Epoch 1/10

782/782 [==============================] - 48s 61ms/step - loss: 0.0077 - accuracy: 0.9978 - val_loss: 0.0738 - val_accuracy: 0.9882

Epoch 2/10

782/782 [==============================] - 39s 50ms/step - loss: 0.0062 - accuracy: 0.9980 - val_loss: 0.0845 - val_accuracy: 0.9888

Epoch 3/10

782/782 [==============================] - 40s 51ms/step - loss: 0.0058 - accuracy: 0.9983 - val_loss: 0.0810 - val_accuracy: 0.9885

Epoch 4/10

782/782 [==============================] - 40s 51ms/step - loss: 0.0061 - accuracy: 0.9982 - val_loss: 0.0744 - val_accuracy: 0.9902

Epoch 5/10

782/782 [==============================] - 40s 51ms/step - loss: 0.0048 - accuracy: 0.9984 - val_loss: 0.0834 - val_accuracy: 0.9911

Epoch 6/10

782/782 [==============================] - 39s 50ms/step - loss: 0.0047 - accuracy: 0.9986 - val_loss: 0.0807 - val_accuracy: 0.9893

Epoch 7/10

782/782 [==============================] - 39s 50ms/step - loss: 0.0039 - accuracy: 0.9987 - val_loss: 0.0894 - val_accuracy: 0.9903

Epoch 8/10

782/782 [==============================] - 39s 50ms/step - loss: 0.0034 - accuracy: 0.9989 - val_loss: 0.0863 - val_accuracy: 0.9904

Epoch 9/10

782/782 [==============================] - 39s 49ms/step - loss: 0.0042 - accuracy: 0.9989 - val_loss: 0.1043 - val_accuracy: 0.9893

Epoch 10/10

782/782 [==============================] - 39s 50ms/step - loss: 0.0044 - accuracy: 0.9986 - val_loss: 0.0994 - val_accuracy: 0.9908

Saved finetuned model as 。/models/finetuned_model.h5

Evaluate model on test Dataset.。

157/157 [==============================] - 1s 7ms/step - loss: 0.0675 - accuracy: 0.9920

loss: 0.068

acc: 0.992

(vitis-ai-tensorflow2) Vitis-AI /workspace/myproj/tf2-mnist-end-to-end 》 bash -x compile_zcu102.sh

+ ARCH=/opt/vitis_ai/compiler/arch/DPUCZDX8G/ZCU102/arch.json

+ OUTDIR=。/compiled_model

+ NET_NAME=customcnn

+ MODEL=。/models/finetuned_model.h5

+ echo -----------------------------------------

-----------------------------------------

+ echo ‘COMPILING MODEL FOR ZCU102.。’

COMPILING MODEL FOR ZCU102.。

+ echo -----------------------------------------

-----------------------------------------

+ compile

+ tee compile.log

+ vai_c_tensorflow2 --model 。/models/finetuned_model.h5 --arch /opt/vitis_ai/compiler/arch/DPUCZDX8G/ZCU102/arch.json --output_dir 。/compiled_model --net_name customcnn

/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/xnnc/translator/tensorflow_translator.py H5pyDeprecationWarning: dataset.value has been deprecated. Use dataset[()] instead.

value = param.get(group).get(ds).value

[INFO] parse raw model :100%|██████████| 10/10 [00:00《00:00, 16871.70it/s]

[INFO] infer shape (NHWC) :100%|██████████| 26/26 [00:00《00:00, 2956.30it/s]

[INFO] generate xmodel :100%|██████████| 26/26 [00:00《00:00, 5561.60it/s]

[INFO] Namespace(inputs_shape=None, layout=‘NHWC’, model_files=[‘。/models/finetuned_model.h5’], model_type=‘tensorflow2’, out_filename=‘。/compiled_model/customcnn_org.xmodel’, proto=None)

[INFO] tensorflow2 model: models/finetuned_model.h5

[OPT] No optimization method available for xir-level optimization.

[INFO] generate xmodel: /workspace/myproj/tf2-mnist-end-to-end/compiled_model/customcnn_org.xmodel

[UNILOG][INFO] The compiler log will be dumped at “/tmp/vitis-ai-user/log/xcompiler-20210325-093926-3120”

[UNILOG][INFO] Target architecture: DPUCZDX8G_ISA0_B4096_MAX_BG2

[UNILOG][INFO] Compile mode: dpu

[UNILOG][INFO] Debug mode: function

[UNILOG][INFO] Target architecture: DPUCZDX8G_ISA0_B4096_MAX_BG2

[UNILOG][INFO] Graph name: mnist_customcnn_model, with op num: 42

[UNILOG][INFO] Begin to compile.。.

[UNILOG][INFO] Total device subgraph number 3, DPU subgraph number 1

[UNILOG][INFO] Compile done.

[UNILOG][INFO] The meta json is saved to “/workspace/myproj/tf2-mnist-end-to-end/。/compiled_model/meta.json”

[UNILOG][INFO] The compiled xmodel is saved to “/workspace/myproj/tf2-mnist-end-to-end/。/compiled_model/customcnn.xmodel”

[UNILOG][INFO] The compiled xmodel‘s md5sum is 764142e83d074ea9470b9eb9d0757f68, and been saved to “/workspace/myproj/tf2-mnist-end-to-end/。/compiled_model/md5sum.txt”

**************************************************

* VITIS_AI Compilation - Xilinx Inc.

**************************************************

+ echo -----------------------------------------

-----------------------------------------

+ echo ’MODEL COMPILED‘

MODEL COMPILED

+ echo -----------------------------------------

-----------------------------------------

(vitis-ai-tensorflow2) Vitis-AI /workspace/myproj/tf2-mnist-end-to-end 》 bash -x make_target_zcu102.sh

+ echo -----------------------------------------

-----------------------------------------

+ echo ’MAKE TARGET ZCU102 STARTED.。‘

MAKE TARGET ZCU102 STARTED.。

+ echo -----------------------------------------

-----------------------------------------

+ TARGET_ZCU102=。/target_zcu102

+ COMPILE_ZCU102=。/compiled_model

+ APP=。/application

+ NET_NAME=customcnn

+ rm -rf 。/target_zcu102

+ mkdir -p 。/target_zcu102/model_dir

+ cp 。/application/app_mt.py 。/target_zcu102

+ echo ’ Copied application to TARGET_ZCU102 folder‘

Copied application to TARGET_ZCU102 folder

+ cp 。/compiled_model/customcnn.xmodel 。/target_zcu102/model_dir/。

+ echo ’ Copied xmodel file(s) to TARGET_ZCU102 folder‘

Copied xmodel file(s) to TARGET_ZCU102 folder

+ mkdir -p 。/target_zcu102/images

+ python generate_images.py --dataset=mnist --image_dir=。/target_zcu102/images --image_format=jpg --max_images=10000

2021-03-25 0934.445257: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1

Command line options:

--dataset : mnist

--subset : test

--image_dir : 。/target_zcu102/images

--image_list :

--label_list :

--image_format : jpg

--max_images : 10000

+ echo ’ Copied images to TARGET_ZCU102 folder‘

Copied images to TARGET_ZCU102 folder

+ echo -----------------------------------------

-----------------------------------------

+ echo ’MAKE TARGET ZCU102 COMPLETED‘

MAKE TARGET ZCU102 COMPLETED

+ echo -----------------------------------------

-----------------------------------------

在 ZynqMP 评估板上运行

进行电路板设置。

之后,将 target_zcu10x 目录中的所有文件复制到 SD 卡。从 SD 卡启动 ZCU10x(下面实例运行的是 zcu104),运行 app_mt.py。结果显示,实际运行模型的精度为 99.13%.

root@xilinx-zcu104-2020_2:~/target_zcu104# python3 app_mt.py --threads 4

Command line options:

--image_dir : images

--threads : 4

--model : model_dir/customcnn.xmodel

Pre-processing 10000 images.。.

Starting 4 threads.。.

Throughput=5622.61 fps, total frames = 10000, time=1.7785 seconds

Correct:9913, Wrong:87, Accuracy:0.9913

原文标题:开发者分享 | Vitis-AI 1.3/TensorFlow2 环境下使用自定义 CNN 模型进行 Mnist 分类

文章出处:【微信公众号:XILINX技术社区】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • API
    API
    +关注

    关注

    2

    文章

    1484

    浏览量

    61803
  • 模型
    +关注

    关注

    1

    文章

    3160

    浏览量

    48703

原文标题:开发者分享 | Vitis-AI 1.3/TensorFlow2 环境下使用自定义 CNN 模型进行 Mnist 分类

文章出处:【微信号:gh_2d1c7e2d540e,微信公众号:XILINX开发者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    创建自定义的基于闪存的引导加载程序(BSL)

    电子发烧友网站提供《创建自定义的基于闪存的引导加载程序(BSL).pdf》资料免费下载
    发表于 09-19 10:50 0次下载
    <b class='flag-5'>创建</b><b class='flag-5'>自定义</b>的基于闪存的引导加载程序(BSL)

    如何创建TestStand自定义步骤

    在之前的课程中简单地介绍过TestStand自带的些步骤类型,如测试、消息弹窗、赋值、标签等等,这些简单的步骤从TestStand的插入选版中就可以添加到序列中。那么在使用中如果碰到需要实现更加灵活、复杂的功能,使用自带的些步骤类型可能难以满足,这时就需要使用到
    的头像 发表于 09-11 14:46 874次阅读
    如何<b class='flag-5'>创建</b>TestStand<b class='flag-5'>自定义</b>步骤

    keras模型转tensorflow session

    在这篇文章中,我们将讨论如何将Keras模型转换为TensorFlow session。 KerasTensorFlow简介 Keras
    的头像 发表于 07-05 09:36 455次阅读

    keras的模块结构介绍

    Keras高级深度学习库,它提供了易于使用的接口来构建和训练深度学习模型。Keras
    的头像 发表于 07-05 09:35 305次阅读

    何在IDF框架中使用自定义的静态库和动态库?

    基于商业需要,我们需要在 ESP-IDF v4.0-rc 这个版本的IDF中开发与使用自定义库,有如下问题请协助: 1如何利用IDF框架编写自定义静态库和动态库? 2何在IDF框架中
    发表于 06-25 07:57

    e203自定义指令硬件模块设计,在vivado硬件自定义指令识别为非法指令怎么解决?

    e203自定义指令硬件模块设计,修改内核,综合没错误,软件也修改工具链通过并产生verilog文件,但在vivado硬件自定义指令识别为非法指令怎么解决
    发表于 05-28 06:40

    TSMaster 自定义 LIN 调度表编程指导

    TSMaster(v2023.10.7.990)之后的版本中新增了实现自定义LIN调度表相关API。今天重点和大家分享下关于编程实现TSMaster自定义LIN调度表
    的头像 发表于 05-11 08:21 603次阅读
    TSMaster <b class='flag-5'>自定义</b> LIN 调度表编程指导

    LabVIEWRing自定义控件,其常量无法保持同步修改,如何解决

    时,其常量无法跟随变换。 如图所示,自定义常量可以修改成不同的映射关系,同样都是“CSP”这个名称,可以对应2或者8。 如果通过创建输入控件的方式,则“CSP”这个名称定对应的是
    发表于 04-24 11:20

    HarmonyOS开发实例:【自定义Emitter】

    使用[Emitter]实现事件的订阅和发布,使用[自定义弹窗]设置广告信息。
    的头像 发表于 04-14 11:37 970次阅读
    HarmonyOS开发实例:【<b class='flag-5'>自定义</b>Emitter】

    鸿蒙ArkUI实例:【自定义组件】

    组件是 OpenHarmony 页面最小显示单元,页面可由多个组件组合而成,也可只由组件组合而成,这些组件可以是ArkUI开发框架自带系统组件,比如 `Text` 、 `But
    的头像 发表于 04-08 10:17 601次阅读

    使用BGM210L创建自定义PCB,是否可以与GPIO引脚共享调试引脚?

    你好 我想使用 BGM210L 创建自定义 PCB,并在此自定义 PCB 上实现调试接口(SWCLK、SWDIO 等)。 由于只有几个引
    发表于 01-16 08:12

    基于TensorFlowKeras的图像识别

    TensorFlowKeras最常见的用途之是图像识别/分类。通过本文,您将了解如何使用Keras达到这目的。
    的头像 发表于 01-13 08:27 767次阅读
    基于<b class='flag-5'>TensorFlow</b>和<b class='flag-5'>Keras</b>的图像识别

    博途用户自定义库的使用

    博途官方提供了很多库,比如:基本函数库、通信库、安全库、驱动库等等,用户可以使用库中的函数/函数块来完成具体的控制任务。除了官方的库,我们也可以创建自己的库(用户自定义库)。比如,把项目
    的头像 发表于 12-25 10:08 873次阅读
    博途用户<b class='flag-5'>自定义</b>库的使用

    【飞腾派4G版免费试用】 第二章:在PC端使用 TensorFlow2 训练目标检测模型

    本章记录了如何使用TensorFlow2 进行目标检测模型训练的过程。
    的头像 发表于 12-15 06:40 2456次阅读
    【飞腾派4G版免费试用】 第二章:在PC端使用 <b class='flag-5'>TensorFlow2</b> 训练目标检测模型

    Maxwell中两种用户自定义材料库的实现方法

    Maxwell支持两种用户自定义材料库。种是User Library(UserLib),另种是Personal Library(PersonalLib)。UserLib通常是
    的头像 发表于 12-14 17:33 5053次阅读
    Maxwell中两种用户<b class='flag-5'>自定义</b>材料库的实现方法