0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

采用IMEC的SiC技术实现无线生物电子通信系统采集的解决方案

电子设计 来源:电子产品世界 作者:电子产品世界 2021-04-17 14:05 次阅读

人体信息监控是一个新兴的领域,人们设想开发无线脑电图(EEG)监控设备来诊断癫痫病人,可穿戴的无线EEG能够极大地改善病人的活动空间,并最终通过因特网实现家庭监护。这样的无线EEG系统已经有了,但如何将他们的体积缩小到病人可接受的程度还是一个不小的挑战。本文介绍采用IMEC的SiC技术,它的开发重点是进一步缩小集成后的EEG系统体积以及将低功耗处理技术、无线通信技术和能量提取技术整合起来,在已有系统上增加一个带太阳能电池和能量存储电路的额外堆叠层,这样就能构成一套完全独立的生物电信号采集方案。

无线生物电子通信系统今后将大大提高人们的生活品质。要想实现这一理想,就要开发出由小型智能传感器节点组成的体域网(body-area networks, BAN)。传感器节点用于收集人体的重要信息,然后将信息送给一个中心智能节点,再由这个智能节点通过无线通信方式将信息发送给基站。借助基于3-D堆叠的(System-in-a-cube,SiC)集成技术可设计实现这些传感器节点。

用于构成体域网的小型低功耗传感器/激励器节点必须具备足够的计算能力和无线通信能力,并应将天线集成在内。每一个节点的智能程度都必须能够使其完成分配给它的任务,例如数据存储和促进算法实现,甚至完成复杂的非线性数据分析。此外,它们还应能与穿戴在身上的其他传感器节点或中心节点通信。而中心节点则通过诸如无线局域网或蜂窝电话网之类的标准电讯设施与外界通信。这样一个BAN就能为个人提供服务,包括慢性病的监督处理、医学诊断、家庭监护、生物测定,以及运动和健康跟踪。

IMEC公司最近获得了技术上的突破,开发出一个体积只有1cm3的小型三维堆叠式SiC系统。首个3-D堆叠原型中包括一个商用每秒8百万指令的低功耗微控制器、一个2.4GHz的无线收发器、几个晶振和其他一些必要的无源器件,还有一个由用户设计匹配网络的单极天线。其中,微控制器和无线收发器都采用了最先进的节能技术。而系统的高集成度是通过一种叫做“3-D堆叠”的技术,将功能不同的多层沿Z轴堆叠起来实现的。每一层通过双列微距焊球与邻层连接。

采用这种通用的堆叠技术就能实现任何一种模块组合。这种低功耗3-D SiC系统可以用于多种无线产品中,从人体信息(脑活动、肌肉活动和心跳)监控到环境数据(温度、压力和湿度)监控,最终用来构成BAN。由于其独特的堆叠特性,这种技术甚至能够将一个特定的传感器集成到单独的一层中,构成一个专用的立方传感器模块。

开发SiC是IMEC公司Human++计划的一部分,预想的是将多个类似的SiC传感器节点联合起来构成一个BAN。Human++计划结合了无线通信技术、封装技术、能源提取技术和低功耗设计技术,目的是开发出能够提升人们生活品质的器件。

能否成功实现这种BAN,有赖于我们对现有器件的能力的扩展程度。因此,首先必需扫除医学和技术上的几个障碍。其一,如今使用的依赖电池供电的设备寿命有限,必需设法延长其使用寿命。第二,还应放大传感器和激励器之间的相互作用,以便适应多生理参数测定之类的新应用的需要。第三,器件应具备一定的智能,能够存储、处理和传输数据。此外,还必需扩展器件的功能,使其能够进行化学和生物学测量。最后,对医学现象也应有一个彻底的认识。

采用IMEC的SiC技术实现无线生物电子通信系统采集的解决方案

图1:IMEC的2010年技术展望

丰富的经验和专有技术使得IMEC在多个技术领域取得了新的突破,这就为应对这样的挑战创造了机会。半导体定标技术催生了尺寸更小功耗更低的电子设备,从而使开发功能更强大的治疗和诊断器件成为可能。

随着微系统技术,尤其是微机电系统(MEMS)技术的发展,兼具电子和机械特性的器件产生了。MEMS技术的第一个应用就是用来开发为自主医学系统供电的取能器,例如基于热能到电能转换的取能器,能够利用体热产生微能量。这种能量的来源是源源不绝的,因此系统可以一直保持工作状态,而且寿命几乎无限长。但问题在于如何证明这种器件能够从人体中提取足够的能量(即至少100毫瓦)来支撑未来系统的运转。MEMS技术另一个可能的应用场合就是用于传感器和激励器系统,这些系统用来提供与外界以及与其周围的混合信号电路的接口。最后,利用MEMS技术还能够开发出可用于超低功耗(ULP)射频收发机的新元件(例如谐振器)。ULP射频设备可用于在传感器节点和穿戴式中心节点间进行通信,平均功耗50μW。

由于使用了新的封装技术,大量不同种类的复杂系统(例如流体生物传感器、射频收发机、微处理器和电池)得以集成到一个很小的器件中,从而使移动式无线医疗器件的穿戴更加简便。

纳米技术则使得利用小型互连器件,实现如细胞、抗体或DNA等身体的生物系统之间的直接相互作用成为可能。新的生物传感器和移植都可能用到这种技术。

如果能够开发出低功耗的处理器结构,又会进一步增大传感器节点的智能程度,使传感器自己就能进行更加复杂的数据处理。这就要求我们设计出能够运行生物医学应用的ULP处理器结构(专用指令集处理器结构和数据存储器结构),如今的生物医学应用一般要求在非优化的处理器上每秒能够运行2千万到10亿次操作。

最后,采用新的设计技术就能有效地对以上应用进行建模、仿真和设计。

尽管人类穿戴BAN这一梦想最早在2010年才能变成现实,但现在已经出现了一些与之相关的技术,其中最有名的就是它在生物电子学研究领域的应用。生物电子学是一个包含无限机遇的领域。生物(或生化)反应与电子信号检测与放大相结合,就产生了新的激动人心的生物电子诊断学。与此类似,利用神经网络和计算机芯片在微电平上的连接,也能开发出药理传感器,甚至设计出用于医学和技术应用的神经电处理器。

人体信息监控是另一个新兴的领域,如开发无线脑电图(EEG)监控设备来诊断癫痫病人。采用可穿戴的无线EEG能够极大地改善病人的活动自由,并最终通过因特网实现家庭监护。这样的无线EEG系统已经有了,但如何将他们的体积缩小到病人可接受的程度还是一个不小的挑战。

采用IMEC的SiC技术就能将无线EEG系统集成到一个体积仅1 cm3的器件中。这样,病人就能穿着十分舒适的无线EEG设备做脑电图了。IMEC今后的开发重点是进一步缩小集成后的EEG系统体积,以及将其低功耗处理技术、无线通信技术和能量提取技术整合起来。在已有系统上增加一个带太阳能电池和能量存储电路的额外堆叠层,也许这样就能构成一套完全独立的解决方案。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2536

    文章

    48849

    浏览量

    743540
  • 无线
    +关注

    关注

    31

    文章

    5336

    浏览量

    171912
  • 通信系统
    +关注

    关注

    6

    文章

    1089

    浏览量

    53127
收藏 人收藏

    评论

    相关推荐

    WIFI无线技术各种热门设计方案~

    应用的解决方案Wi-Fi 基带芯片和 Wi-Fi 无线网卡设计方案简单介绍基于WIFI技术的网络救援机器人简述基于Wifi的电子看板语音
    发表于 12-13 15:26

    脉冲生物电

    脉冲生物电作用于体表,刺痛感明显,求指点
    发表于 06-22 22:38

    活动与健康监测器解决方案

    可穿戴设备在移动医疗方面的作用。2、方案概述可穿戴健康监护系统的研究模型主要分为基于微处理器和定制平台的可穿戴式。Ameya360 活动与健康监测器解决方案对于把生物传感器
    发表于 04-17 15:28

    工业数据无线采集方案的设计与开发

    各项操作流程,并对数据进行分析,最后将数据存储到工业库中。该方案架构图如图2所示。图2:研发解决方案架构图 三、总结 本项目采用无线通讯技术
    发表于 06-22 12:05

    一周推荐:可穿戴式应用模拟前端 (AFE) 解决方案 集成式生物电势 AFE 和生物阻抗 (BioZ) + HR 检测算法

    MAX30001 生物电势和阻抗模拟前端 (AFE)Maxim 的单通道集成式生物电势 AFE 和生物阻抗 (BioZ) + HR 检测算法Maxim]MAX30001 可提供心电图 (ECG
    发表于 08-21 10:05

    基于NRF905的无线温度采集系统设计方案

    传感器技术无线通信技术相结合,实现无线温度采集功能。  1
    发表于 12-04 16:01

    基于HM301D的STEVAL-IME002V1,用于生物电传感器和生物阻抗测量

    STEVAL-IME002V1,演示板围绕新型HM301D诊断质量模拟前端设计,用于生物电传感器和生物阻抗测量。该电路板旨在演示HM301D在心电图仪(或患者监护系统)中的应用。它包含一个来自STM32系列的32位微控制器,用于
    发表于 08-15 08:52

    无线温湿度监控解决方案

    一、 方案简介本方案是以Smart Node无线传感技术为基础,针对温湿度监控提供的一套无线物联网解决方
    发表于 09-18 10:49

    怎么基于传感器与无线通信技术实现无线温度采集功能?

    针对有线温度采集技术的局限性,设计了一种低功耗多点无线温度采集系统。对温度采集
    发表于 09-26 07:51

    全息生物电检测仪的工作原理是什么?

    全息生物电检测仪根据博大精深的中医理论,将人体脏腑在身体反射区上的穴位和手腕部脉搏信号和血信号变换成对应的生物电数据,并将此数据与计算机海量数据库中的正常值加以对比,进而确定被测者身体正常与否。全息生物健康检测仪能分析被测者身体
    发表于 11-04 09:10

    何为生物电生物电的原理是什么?

    一、简介何为生物电?1 ECG:心电图。心电图(electrocardiogram)心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,通过心电描记器从体表引出多种形式的电位变化
    发表于 07-12 08:06

    基于IMEC生物电信号采集方案

    本文介绍采用IMECSiC技术,它的开发重点是进一步缩小集成后的EEG系统体积以及将低功耗处理技术
    发表于 07-11 09:15 1347次阅读
    基于<b class='flag-5'>IMEC</b>的<b class='flag-5'>生物电</b>信号<b class='flag-5'>采集</b><b class='flag-5'>方案</b>

    SiC集成技术生物电信号采集设计

    无线生物电子通信系统今后将大大提高人们的生活品质。要想实现这一理想,就要开发出由小型智能传感器节点组成的体域网
    发表于 01-06 16:21 1092次阅读
    <b class='flag-5'>SiC</b>集成<b class='flag-5'>技术</b>在<b class='flag-5'>生物电</b>信号<b class='flag-5'>采集</b>设计

    生物电势测量的实践挑战相关解决方案探讨

    心电图仪、肌电图仪和脑电图仪分别通过测量活体组织表面的电势来测量心脏、肌肉与大脑的行为。在进行生物电势测量时,临床医生需要面对实践挑战。本文将探讨相关解决方案。 心电图仪(ECG)、肌电图仪(EMG
    发表于 02-06 05:09 1655次阅读
    <b class='flag-5'>生物电</b>势测量的实践挑战相关<b class='flag-5'>解决方案</b>探讨

    高集成度、微型无线生物电子设备助力实现健康监测

    随着医疗技术的发展,健康和疾病状况的管理最终将由高集成度、微型无线生物电子设备来实现,这些设备旨在持续监测多种生物标志物。
    的头像 发表于 10-25 16:18 1460次阅读
    高集成度、微型<b class='flag-5'>无线</b><b class='flag-5'>生物电子</b>设备助力<b class='flag-5'>实现</b>健康监测