0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度解读钴酸锂体系电解液应用

锂电联盟会长 来源: 锂电联盟会长 作者:锂电联盟会长 2021-04-17 09:20 次阅读

c7d090e4-9ef7-11eb-8b86-12bb97331649.jpg

c80160d4-9ef7-11eb-8b86-12bb97331649.jpg

c840963c-9ef7-11eb-8b86-12bb97331649.jpg

c8b08bcc-9ef7-11eb-8b86-12bb97331649.jpg

c8d61e28-9ef7-11eb-8b86-12bb97331649.jpg

c8ff488e-9ef7-11eb-8b86-12bb97331649.jpg

c920a812-9ef7-11eb-8b86-12bb97331649.jpg

c95027c2-9ef7-11eb-8b86-12bb97331649.jpg

c9815d60-9ef7-11eb-8b86-12bb97331649.jpg

c9a664f2-9ef7-11eb-8b86-12bb97331649.jpg

c9ca78f6-9ef7-11eb-8b86-12bb97331649.jpg

c9ead312-9ef7-11eb-8b86-12bb97331649.jpg

ca2431b6-9ef7-11eb-8b86-12bb97331649.jpg

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 正极材料
    +关注

    关注

    4

    文章

    326

    浏览量

    18743
  • 电解液
    +关注

    关注

    10

    文章

    859

    浏览量

    23278
  • 钴酸锂
    +关注

    关注

    1

    文章

    32

    浏览量

    9198

原文标题:钴酸锂体系电解液,终于讲明白了!

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    相关推荐

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究 Engineering electrolyte strong-weak coupling effect toward
    的头像 发表于 01-21 11:01 171次阅读
    强弱耦合型<b class='flag-5'>电解液</b>调控超级电容器宽温域特性及其机制研究

    调控磷酸酯基阻燃电解液离子-偶极相互作用实现钠离子软包电池安全稳定运行

    研究背景 相较资源有限的锂离子电池,钠离子电池是一种极具前景的电化学储能技术,尤其适用于大规模储能系。然而,大多数钠离子电池体系仍基于传统碳酸酯基电解液,这种电解液的热稳定性差、挥发性高且易燃,在
    的头像 发表于 01-06 17:41 276次阅读
    调控磷酸酯基阻燃<b class='flag-5'>电解液</b>离子-偶极相互作用实现钠离子软包电池安全稳定运行

    贴片铝电解电容的封装材质型号有哪些?

    的散热功能。 内部材料 :主要包括铝箔、电解纸和电解液。铝箔经过电化腐蚀处理,形成凹凸不平的表面,以增大与电解质的接触面积;电解纸则用于吸附电解液
    的头像 发表于 12-27 14:32 268次阅读
    贴片铝<b class='flag-5'>电解</b>电容的封装材质型号有哪些?

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 663次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长寿命水系钠离子电池

    快充过程析、SEI生长和电解液分解耦合机制的定量分析

    机制进行了细致深入的分析。研究结果揭示,沉积、固体电解质界面(SEI)的生长以及电解液的分解这三个关键过程存在着紧密的耦合作用,共同加剧了快速充电的条件下的电池性能衰减。该工作为研究快充条件下锂离子电池性能退化的复杂机制提供了
    的头像 发表于 12-10 09:15 893次阅读
    快充过程析<b class='flag-5'>锂</b>、SEI生长和<b class='flag-5'>电解液</b>分解耦合机制的定量分析

    钠电新突破:实现宽温长寿命电池的电解液革新

       【研究背景】 钠离子电池(SIBs)因其资源丰富、成本低等优势成为锂离子电池的有力替代品。电解液是SIBs的“血液”,对电池性能如容量、倍率、稳定性、高低温性能和安全性有重大影响。钠盐
    的头像 发表于 11-28 09:51 577次阅读
    钠电新突破:实现宽温长寿命电池的<b class='flag-5'>电解液</b>革新

    物联网行业中的常用电池方案_亚电池

    1.亚电池简介 亚硫酰氯(Li/SOCl2)电池(简称:亚电池)是一种以为负极,碳作正极,无水四氯铝
    的头像 发表于 09-25 11:22 786次阅读
    物联网行业中的常用电池方案_<b class='flag-5'>锂</b>亚电池

    镍氢电池的电解液是什么

    镍氢电池是一种常见的二次电池,具有较高的能量密度和良好的循环性能。其电解液是电池中的关键组成部分,对电池的性能和寿命有重要影响。 一、镍氢电池简介 镍氢电池(Ni-MH Battery)是一种碱性
    的头像 发表于 07-19 15:35 1257次阅读

    高压电解电容虚标原因,高压电解电容虚标怎么判断

    高压电解电容内部使用的电解液通常是有机液体电解质。由于电解质的化学性质,电容器内部的电解液可能会对金属极板进行腐蚀,导致金属极板损伤。这种损
    的头像 发表于 06-08 17:15 1860次阅读

    新宙邦拟在美国投建10万吨/年电解液项目

    近日,新宙邦发布公告,宣布了一项重要的海外扩产计划。为满足北美地区客户对碳酸酯溶剂及锂离子电池电解液日益增长的需求,公司计划在路易斯安那州的Ascension Parish投建一个大型生产项目。
    的头像 发表于 05-24 11:29 699次阅读

    调控固态电解质电场结构促进锂离子高效传输!

    聚合物基固态电解质得益于其易加工性,最有希望应用于下一代固态金属电池。
    的头像 发表于 05-09 10:37 1016次阅读
    铌<b class='flag-5'>酸</b><b class='flag-5'>锂</b>调控固态<b class='flag-5'>电解</b>质电场结构促进锂离子高效传输!

    最新Nature Energy开发新型稀释剂助推金属电池实用化!

    众所知周,通过调控电解液来稳定固体电解质间相(SEI),对于延长金属电池循环寿命至关重要。
    的头像 发表于 05-07 09:10 1075次阅读
    最新Nature Energy开发新型稀释剂助推<b class='flag-5'>锂</b>金属电池实用化!

    位传感器监测铅酸电池电解液

    化学反应,电解液位会略微下降,如果位过低,不仅会影响电池的正常工作,还可能会对电池造成损坏。 铅酸电池电解液位指的是
    的头像 发表于 04-08 15:10 851次阅读
    <b class='flag-5'>液</b>位传感器监测铅酸电池<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位

    非质子型弱配位电解液实现无腐蚀超薄锌金属电池

    锌金属电池以高容量、低成本、环保等特点受到广泛关注。但由于金属锌在传统水系电解液中热力学不稳定,锌金属电池的实际应用仍面临挑战。
    的头像 发表于 04-02 09:05 642次阅读
    非质子型弱配位<b class='flag-5'>电解液</b>实现无腐蚀超薄锌金属电池

    基于薄膜铌的高性能集成光子学研究

    3月25日,Marko Lončar 博士出席光库科技与 HyperLight 联合主办的“薄膜铌光子学技术与应用”论坛,并发表了题为“基于薄膜铌的高性能集成光子学”的演讲。
    的头像 发表于 03-27 17:18 1093次阅读
    基于薄膜铌<b class='flag-5'>酸</b><b class='flag-5'>锂</b>的高性能集成光子学研究