0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一个使用YoloV5的深度指南,使用WBF进行性能提升

新机器视觉 来源:AI公园 作者:AI公园 2021-04-18 10:05 次阅读

导读

一个使用YoloV5的深度指南,使用WBF进行性能提升。

网上有大量的YoloV5教程,本文的目的不是复制内容,而是对其进行扩展。我最近在做一个目标检测竞赛,虽然我发现了大量创建基线的教程,但我没有找到任何关于如何扩展它的建议。此外,我想强调一下YoloV5配置中影响性能的最重要部分,因为毕竟数据科学主要是关于实验和超参数调整。

在这之前,我想说使用目标检测模型和使用图像分类模型在框架和库的工作方式上是不同的。这是我注意到的,我花了很长时间才弄明白。大多数流行的目标检测模型(如YoloV5、EfficientDet)使用命令行接口来训练和评估,而不是使用编码方法。这意味着,你所需要做的就是获取特定格式的数据(COCO或VOC),并将命令指向它。这通常与使用代码训练和评估模型的图像分类模型不同。

数据预处理

YoloV5期望你有两个目录,一个用于训练,一个用于验证。在这两个目录中,你需要另外两个目录,“Images”和“Labels”。Images包含实际的图像,每个图像的标签都应该有一个带有该图像标注的.txt文件,文本文件应该有与其对应的图像相同的名称。

标注格式如下:

<'class_id'><'x_center'><'y_center'><'height'>

要在代码中做到这一点,你可能需要一个类似的函数,在原始数据帧中有图像项,它们的类id和它们的边界框:

defcreate_file(df,split_df,train_file,train_folder,fold): os.makedirs('labels/train/',exist_ok=True) os.makedirs('images/train/',exist_ok=True) os.makedirs('labels/val/',exist_ok=True) os.makedirs('images/val/',exist_ok=True) list_image_train=split_df[split_df[f'fold_{fold}']==0]['image_id'] train_df=df[df['image_id'].isin(list_image_train)].reset_index(drop=True) val_df=df[~df['image_id'].isin(list_image_train)].reset_index(drop=True) fortrain_imgintqdm(train_df.image_id.unique()): withopen('labels/train/{train_img}.txt','w+')asf: row=train_df[train_df['image_id']==train_img] [['class_id','x_center','y_center','width','height']].values row[:,1:]/=SIZE#Imagesize,512here row=row.astype('str') forboxinrange(len(row)): text=''.join(row[box]) f.write(text) f.write(' ') shutil.copy(f'{train_img}.png', f'images/train/{train_img}.png') forval_imgintqdm(val_df.image_id.unique()): withopen(f'{labels/val/{val_img}.txt','w+')asf: row=val_df[val_df['image_id']==val_img] [['class_id','x_center','y_center','width','height']].values row[:,1:]/=SIZE row=row.astype('str') forboxinrange(len(row)): text=''.join(row[box]) f.write(text) f.write(' ') shutil.copy(f'{val_img}.png', f'images/val/{val_img}.png')

注意:不要忘记保存在标签文本文件中的边界框的坐标**必须被归一化(从0到1)。**这非常重要。另外,如果图像有多个标注,在文本文件中,每个标注(预测+边框)将在单独的行上。

在此之后,你需要一个配置文件,其中包含标签的名称、类的数量以及训练和验证的路径。

importyaml classes=[‘Aorticenlargement’, ‘Atelectasis’, ‘Calcification’, ‘Cardiomegaly’, ‘Consolidation’, ‘ILD’, ‘Infiltration’, ‘LungOpacity’, ‘Nodule/Mass’, ‘Otherlesion’, ‘Pleuraleffusion’, ‘Pleuralthickening’, ‘Pneumothorax’, ‘Pulmonaryfibrosis’] data=dict( train=‘../vinbigdata/images/train’,#trainingimagespath val=‘../vinbigdata/images/val’,#validationimagespath nc=14,#numberofclasses names=classes ) withopen(‘./yolov5/vinbigdata.yaml’,‘w’)asoutfile: yaml.dump(data,outfile,default_flow_style=False)

现在,你需要做的就是运行这个命令:

pythontrain.py—img640—batch16—epochs30—data./vinbigdata.yaml—cfgmodels/yolov5x.yaml—weightsyolov5x.pt

从经验中需要注意的事情:

好了,现在我们已经浏览了基本知识,让我们来看看重要的东西:

别忘了归一化坐标。

如果你的初始性能比预期的差得多,那么最可能的原因(我在许多其他参赛者身上看到过这种情况)是你在预处理方面做错了什么。这看起来很琐碎,但有很多细节你必须注意,特别是如果这是你的第一次。

YoloV5有多种型号(yolov5s、yolov5m、yolov5l、yolov5x),不要只选择最大的一个,因为它可能会过拟合。从一个基线开始,比如中等大小的,然后试着改善它。

虽然我是在512尺寸的图像上训练的,但我发现用640来infer可以提高性能。

不要忘记加载预训练的权重(-weights标志)。迁移学习将大大提高你的性能,并将为你节省大量的训练时间(在我的例子中,大约50个epoch,每个epoch大约需要20分钟!)

Yolov5x需要大量的内存,当训练尺寸为512,批大小为4时,它需要大约14GB的GPU内存(大多数GPU大约8GB内存)。

YoloV5已经使用了数据增强,你可以选择喜欢或不喜欢的增强,你所需要做的就是使用yolov5/data/hyp.scratch.yml文件去调整。

默认的yolov5训练脚本使用weights and biases,说实话,这非常令人印象深刻,它在模型训练时保存所有度量。但是,如果你想关闭它,只需在训练脚本标记中添加WANDB_MODE= " dryrun "即可。

我希望早就发现的一件事是,YoloV5将大量有用的指标保存到目录YoloV5 /runs/train/exp/中。训练之后,你可以找到“confusion_matrix.png”和“results.png”,其中的result .png应该是这样的:

729b6c24-9fbb-11eb-8b86-12bb97331649.png

使用WBF预处理

好了,现在你已经调整了超参数,升级了你的模型,测试了多种图像大小和交叉验证。现在是介绍一些提高性能的技巧的时候了。

加权框融合是一种在训练前(清理数据集)或训练后(使预测更准确)动态融合框的方法。如果你想知道更多,你可以在这里查看我的文章:

WBF:优化目标检测,融合过滤预测框 (qq.com)

要使用它对数据集进行预处理,这将大多数参赛者的性能提高了大约10-20%,你可以这样使用:

fromensemble_boxesimport* forimage_idintqdm(df['image_id'],leave=False): image_df=df[df['image_id']==image_id].reset_index(drop=True) h,w=image_df.loc[0,['height','width']].values boxes=image_df[['x_min','y_min','x_max','y_max']].values.tolist() #Normalisealltheboundingboxes(bydividingthembysize-1 boxes=[[j/(size-1)forjini]foriinboxes] scores=[1.0]*len(boxes)#setallofthescoresto1sinceweonlyhave1modelhere labels=[float(i)foriinimage_df['class_id'].values] boxes,scores,labels=weighted_boxes_fusion([boxes],[scores],[labels],weights=None,iou_thr=iou_thr, skip_box_thr=skip_box_thr) list_image.extend([image_id]*len(boxes)) list_h.extend([h]*len(boxes)) list_w.extend([w]*len(boxes)) list_boxes.extend(boxes) list_cls.extend(labels.tolist()) #bringtheboundingboxesbacktotheiroriginalsize(bymultiplyingbysize-1)list_boxes=[[int(j*(size-1))forjini]foriinlist_boxes] new_df['image_id']=list_image new_df['class_id']=list_cls new_df['h']=list_h new_df['w']=list_w #Unpackthecoordinatesfromtheboundingboxes new_df['x_min'],new_df['y_min'], new_df['x_max'],new_df['y_max']=np.transpose(list_boxes)

这意味着要在将边框坐标保存到标注文件之前完成。你还可以尝试在用YoloV5以同样的方式预测边界框之后使用它。

首先,在训练YoloV5之后,运行:

!pythondetect.py—weights/runs/train/exp/weights —img640 —conf0.005 —iou0.45 —source$test_dir —save-txt—save-conf—exist-ok

然后提取框、分数和标签:

runs/detect/exp/labels

然后传递到:

boxes,scores,labels=weighted_boxes_fusion([boxes],[scores],[labels],weights=None,iou_thr=iou_thr, skip_box_thr=skip_box_thr)

最后的思考

我希望你已经学到了一些关于扩展你的基线YoloV5的知识,我认为最重要的事情总是要考虑的是迁移学习,图像增强,模型复杂性,预处理和后处理技术。这些是你可以轻松控制和使用YoloV5来提高性能的大部分方面。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 图像分类
    +关注

    关注

    0

    文章

    90

    浏览量

    11907
  • 目标检测
    +关注

    关注

    0

    文章

    204

    浏览量

    15590
  • 迁移学习
    +关注

    关注

    0

    文章

    74

    浏览量

    5557

原文标题:高级YoloV5指南,使用WBF来提升目标检测性能

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    在树莓派上部署YOLOv5进行动物目标检测的完整流程

    卓越的性能。本文将详细介绍如何在性能更强的计算机上训练YOLOv5模型,并将训练好的模型部署到树莓派4B上,通过树莓派的摄像头进行实时动物目标检测。
    的头像 发表于 11-11 10:38 380次阅读
    在树莓派上部署<b class='flag-5'>YOLOv5</b><b class='flag-5'>进行</b>动物目标检测的完整流程

    RK3588 技术分享 | 在Android系统中使用NPU实现Yolov5分类检测

    : NPU帮助机器完成更高效的翻译、文本分类和情感分析,推动了自然语言处理技术的发展。 实例分享:Yolov5分类检测 在RK3588处理器上,不仅可以基于Linux系统使用NPU,也可以
    发表于 10-24 10:13

    【飞凌嵌入式OK3576-C开发板体验】RKNN神经网络算法开发环境搭建

    download_model.sh 脚本,该脚本 将下载可用的 YOLOv5 ONNX 模型,并存放在当前 model 目录下,参考命令如下: 安装COCO数据集,在深度神经网
    发表于 10-10 09:28

    【飞凌嵌入式OK3576-C开发板体验】rknn实现yolo5目标检测

    进入 rknn_model_zoo/examples/yolov5/python 目录,运行 yolov5.py 脚本,便可通过连板调试的方式在板端运行 YOLOv5 模型 板端推理 完整运行
    发表于 09-19 02:20

    RK3588 技术分享 | 在Android系统中使用NPU实现Yolov5分类检测-迅为电子

    RK3588 技术分享 | 在Android系统中使用NPU实现Yolov5分类检测-迅为电子
    的头像 发表于 08-23 14:58 598次阅读
    RK3588 技术分享 | 在Android系统中使用NPU实现<b class='flag-5'>Yolov5</b>分类检测-迅为电子

    RK3588 技术分享 | 在Android系统中使用NPU实现Yolov5分类检测

    : NPU帮助机器完成更高效的翻译、文本分类和情感分析,推动了自然语言处理技术的发展。 实例分享:Yolov5分类检测 在RK3588处理器上,不仅可以基于Linux系统使用NPU,也可以
    发表于 08-20 11:13

    基于迅为RK3588【RKNPU2项目实战1】:YOLOV5实时目标分类

    [/url] 【RKNPU2 人工智能开发】 【AI深度学习推理加速器】——RKNPU2 从入门到实践(基于RK3588和RK3568) 【RKNPU2项目实战1】:YOLOV5实时目标分类 【RKNPU2项目实战2】:SORT目标追踪 【RKNPU2项目实战3】车牌识别
    发表于 08-15 10:51

    YOLOv5的原理、结构、特点和应用

    YOLOv5(You Only Look Once version 5)是种基于深度学习的实时目标检测算法,它属于卷积神经网络(CNN)的范畴。下面我将详细介绍
    的头像 发表于 07-03 09:23 4841次阅读

    yolov5的best.pt导出成onnx转化成fp32 bmodel后在Airbox上跑,报维度不匹配怎么处理?

    用官方的模型不出错,用自己的yolov5训练出来的best.pt导出成onnx转化成fp32 bmodel后在Airbox上跑,出现报错: linaro@bm1684:~/yolov5/python
    发表于 05-31 08:10

    maixcam部署yolov5s 自定义模型

    ://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt 训练(博主使用的是学校的集群进行训练) python3 train.py
    发表于 04-23 15:43

    yolov5转onnx在cubeAI上部署失败的原因?

    一个我是转onnx时 想把权重文件变小点 就用了半精度 --half,则说17版本不支持半精度 后面则是没有缩小的单精度 但是显示哪里溢出了···· 也不说是哪里、、。。。 到底能不能部署yolov5这种东西啊?? 也没看见几个部署在这上面..............
    发表于 03-14 06:23

    基于QT5+OpenCV+OpenVINO C++的应用打包过程

    我用QT C++写了YOLOv5模型推理演示应用。
    的头像 发表于 01-26 10:17 1134次阅读
    基于QT<b class='flag-5'>5</b>+OpenCV+OpenVINO C++的应用打包过程

    yolov5量化INT8出错怎么处理?

    model_deploy.py --mlir yolov5l.mlir --quantize INT8 --calibration_table yolov5l_cali_table --chip
    发表于 01-10 06:40

    在C++中使用OpenVINO工具包部署YOLOv5-Seg模型

    YOLOv5兼具速度和精度,工程化做的特别好,Git clone到本地即可在自己的数据集上实现目标检测任务的训练和推理,在产业界中应用广泛。开源社区对YOLOv5支持实例分割的呼声高涨,YOLOv5在v7.0中正式官宣支持实例分
    的头像 发表于 12-21 10:17 2025次阅读
    在C++中使用OpenVINO工具包部署<b class='flag-5'>YOLOv5</b>-Seg模型

    【爱芯派 Pro 开发板试用体验】部署爱芯派官方YOLOV5模型

    继上文开箱后,本文主要依托爱芯元智官方的实例,进行官方YOLOV5模型的部署和测试。 、环境搭建 由于8核A55的SoC,加上目前Debian OS的工具齐全,所以决定直接在板上编译程序
    发表于 12-12 22:58