0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

激光雷达SLAM算法有哪些?

新机器视觉 来源:知乎 作者:知乎 2021-04-18 10:18 次阅读

方法一

激光雷达分单线和多线这两大类,针对这两类Lidar所使用的算法也不尽相同。 首先单线雷达一般应用在平面运动场景,多线雷达则可以应用于三维运动场景。

2D Lidar SLAM

一般将使用单线雷达建构二维地图的SLAM算法,称为2D Lidar SLAM。大家熟知的2D Lidar SLAM算法有:gmapping, hector, karto, cartographer。通常数据和运动都限制在2D平面内且运动平面与激光扫描平面平行。

gmapping[1]

基于粒子滤波的2D激光雷达SLAM,构建二维栅格地图。融合里程计信息,没有回环检测。 优点是在小场景中,计算量小,速度较快。 缺点是每个粒子都携带一幅地图,无法应对大场景(内存和计算量巨大);如果里程不准或标定参数不准,在长回廊等环境中容易把图建歪。

9857f914-9fbb-11eb-8b86-12bb97331649.jpg

98607e0e-9fbb-11eb-8b86-12bb97331649.jpg

hector[2]

hector SLAM是完全基于scan-matching的,使用迭代优化的方法来求匹配的最佳位置,为避免陷入局部极值,也采用多分辨率的地图匹配。 由于完全依赖于scan matching,要求雷达的测量精度较高、角度范围大,扫描速度较高(或移动速度慢)。噪声多、边角特征点少的场景就很容易失败。 原文所提出方法的特点还在于,加入IMU,使用EKF估计整体的6DoF位姿,并根据roll, pitch角将激光扫描数据投影到XY平面,因而支持激光雷达有一定程度的倾斜,比如手持或机器人运动在不是很平整的地面上。

karto[3][4]

karto是基于scan-matching,回环检测和图优化SLAM算法,采用SPA(Sparse Pose Adjustment)进行优化。 关于karto 和 cartographer 的比较,可以看看这里:https://blog.csdn.net/hzy925/article/details/78857241

cartographer[5][6]

cartographer是谷歌开源的激光SLAM框架,主要特点在于: 1.引入submap,scan to submap matching,新到的一帧数据与最近的submap匹配,放到最优位置上。如果不再有新的scan更新到最近的submap,再封存该submap,再去创建新的submap。 2.回环检测和优化。利用submap和当前scan作回环检测,如果当前scan与已经创建的submap在距离上足够近,则进行回环检测。检测到回环之后用ceres进行优化,调整submap之间的相对位姿。为了加快回环检测,采用分枝定界法。 cartographer也可以应用于3D Lidar SLAM(我还没试过),不过最出名的还是她在2D Lidar SLAM方面的出色表现,毕竟论文标题就是“Real-time loop closure in 2D LIDAR SLAM”。

3D Lidar SLAM

3D Lidar SLAM主要是针对多线雷达的SLAM算法。比较出名的有LOAM, LeGO-LOAM, LOAM-livox等。

LOAM[7]

LOAM是针对多线激光雷达的SLAM算法,主要特点在于:1) 前端抽取平面点和边缘点,然后利用scan-to-scan的匹配来计算帧间位姿,也就形成了里程计;2) 由估计的帧间运动,对scan中的每一个点进行运动补偿;3) 生成map时,利用里程计的信息作为submap-to-map的初始估计,再在利用submap和map之间的匹配做一次优化。 LOAM提出的年代较早(2014),还没有加入回环优化。 关于LOAM的详细解析,可以参考这篇专栏文章: https://zhuanlan.zhihu.com/p/111388877ALOAM[8]是Advanced implementation of LOAM,使用Eigen和ceres-solver简化代码实现。

LeGO-LOAM[9]

LeGO-LOAM在LOAM的基础上主要改进:1) 地面点分割,点云聚类去噪;2)添加了ICP回环检测和gtsam优化。 关于LeGO-LOAM的详细解析,可以查看这个专栏文章: https://zhuanlan.zhihu.com/p/115986186

LOAM_livox[10]

大疆2019年公布的面向小FOV Lidar的LOAM算法。相比LOAM,做了一些改动。算法的特点: 1.添加策略提取更鲁棒的特征点:a) 忽略视角边缘有畸变的区域; b) 剔除反射强度过大或过小的点 ; c) 剔除射线方向与所在平台夹角过小的点; d) 部分被遮挡的点 2.与LOAM一样,有运动补偿 3.里程计中剔除相对位姿解算后匹配度不高的点(比如运动物体)之后,再优化一次求解相对位姿。

视觉和Lidar 融合的SLAM算法

VLOAM[11]

VLOAM 是视觉和激光雷达紧耦合的方案。

988ee05a-9fbb-11eb-8b86-12bb97331649.jpg

视觉里程计部分,图像帧之间的相对位姿估计以60Hz运行。先抽取和匹配图像特征,雷达点云融合成深度地图,再将深度地图与视觉特征点关联起来,以帮助计算两帧之间的相对位姿。 雷达里程计部分,将1s内的数据作为一个完整扫描 sweep。Sweep-to-Sweep refinement模块优化求解两个sweep之间的相对运动并去除运动畸变,Sweep-to-Map Registration模块将局部点云注册到已经构建的地图上面。 Transform Integration模块则结合两个里程计,以视觉里程计的高帧率输出位姿估计。 待补充 。。。

参考

1.Grisetti, G., et al. (2007). "Improved techniques for grid mapping with rao-blackwellized particle filters." 23(1): 34-46. 2.Kohlbrecher, S., et al. (2011). A flexible and scalable slam system with full 3d motion estimation. 2011 IEEE international symposium on safety, security, and rescue robotics, IEEE. 3.https://github.com/ros-perception/slam_karto 4.https://github.com/skasperski/OpenKarto 5.https://github.com/cartographer-project/cartographer 6.Hess, W., et al. (2016). Real-time loop closure in 2D LIDAR SLAM. Robotics and Automation (ICRA), 2016 IEEE International Conference on, IEEE. 7.Zhang, J. and S. Singh (2014). LOAM: Lidar Odometry and Mappingin Real-time. Robotics: Science and Systems. 8.https://github.com/HKUST-Aerial-Robotics/A-LOAM 9.Shan, T. and B. Englot (2018). Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE. 10.Lin, J. and F. Zhang (2020). Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV. 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE. 11.Zhang, J. and S. Singh (2015). Visual-lidar odometry and mapping: Low-drift, robust, and fast. 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE.

方法二

2D:效果最好的应当是Google的Cartographer,此外还有基于粒子滤波的gmapping,基于优化的hector slam等等。 3D领域: 经典的LOAM(A-LOAM),用特征点:planar points & edge points 来进行帧间匹配,无回环 LeGO-LOAM ICP 的方法加入了回环,用于减小漂移,一致性更强 G-LOAM 引入 GPS 作为新增的位姿约束,用 Levenberg-Marquardt 方法优化位姿图 LOAM-Livox (HKU Mars Lab)一套可用于固态激光雷达的SLAM算法 Fast-LIO (HKU Mars Lab),一套可用于无人机的基于EKF的雷达惯导里程计

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4599

    浏览量

    92617
  • SLAM
    +关注

    关注

    23

    文章

    419

    浏览量

    31782
  • 激光雷达
    +关注

    关注

    967

    文章

    3937

    浏览量

    189563

原文标题:有哪些激光雷达SLAM算法?

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    激光雷达SLAM算法中的应用综述

    SLAM算法运行的重要传感器。基于激光雷达SLAM算法,对激光雷达
    的头像 发表于 11-12 10:30 232次阅读
    <b class='flag-5'>激光雷达</b>在<b class='flag-5'>SLAM</b><b class='flag-5'>算法</b>中的应用综述

    激光雷达会伤害眼睛吗?

    随着激光雷达日益普及,人们开始担忧:这种发射激光的设备,对人眼的安全性如何?了解这个问题前,我们首先需要知道激光雷达和它发射的激光,到底是什么。
    的头像 发表于 11-07 10:47 153次阅读
    <b class='flag-5'>激光雷达</b>会伤害眼睛吗?

    激光雷达的维护与故障排查技巧

    激光雷达(LiDAR,Light Detection and Ranging)是一种利用激光进行距离测量和目标识别的技术。它广泛应用于无人驾驶汽车、地理信息系统(GIS)、环境监测、航空航天等领域
    的头像 发表于 10-27 11:04 510次阅读

    激光雷达技术的基于深度学习的进步

    一、激光雷达技术概述 激光雷达技术是一种基于激光的遥感技术,通过发射激光脉冲并接收反射回来的光来测量物体的距离和速度。与传统的雷达技术相比,
    的头像 发表于 10-27 10:57 291次阅读

    光学雷达激光雷达的区别是什么

    光学雷达激光雷达是两种不同的遥感技术,它们在原理、应用、优缺点等方面都存在一定的差异。以下是对光学雷达激光雷达的比较: 定义和原理 光学雷达
    的头像 发表于 08-29 17:20 997次阅读

    lidar激光雷达扫描仪什么用

    LiDAR(Light Detection and Ranging,激光探测与测距)是一种利用激光技术进行距离测量和成像的技术。LiDAR激光雷达扫描仪具有高精度、高分辨率、快速扫描等特点,广泛应用
    的头像 发表于 08-29 16:58 602次阅读

    一文看懂激光雷达

        文章大纲 城市 NOA 成竞争高地,政策助力高阶智能驾驶加速落地 成本下探+智驾升级,2030年激光雷达市场规模有望超万亿       ·城市 NOA面临工况复杂问题,激光雷达为“优选
    的头像 发表于 06-27 08:42 554次阅读
    一文看懂<b class='flag-5'>激光雷达</b>

    商用激光雷达产品InnovizOne什么独特之处

    Innoviz 是汽车行业的知名激光雷达制造商,率先开创了激光雷达感知技术。结合摄像头和雷达等其他传感器,Innoviz 能实现真正可脱手、解放双眼的自动驾驶体验。安森美 (onsemi)与 Innoviz 合作,助其推出了首款
    的头像 发表于 06-17 09:46 633次阅读

    激光雷达的探测技术介绍 机载激光雷达发展历程

    机载激光雷达是指安装在飞行器(如飞机、直升机、无人机等)上的激光雷达系统,用于从空中对地面或其他目标进行测量、成像和监测。
    的头像 发表于 03-21 16:49 2784次阅读
    <b class='flag-5'>激光雷达</b>的探测技术介绍 机载<b class='flag-5'>激光雷达</b>发展历程

    华为激光雷达参数怎么设置

    华为激光雷达是一种常用的传感器技术,可用于距离测量和感应。它的参数设置对于确保其性能和功能至关重要。在本文中,我们将详细介绍华为激光雷达的参数设置以及其影响和应用。 首先,我们需要了解激光雷达
    的头像 发表于 01-19 14:17 1670次阅读

    什么是激光雷达激光雷达的构成与分类

    所谓雷达,就是用电磁波探测目标的电子设备。激光雷达(LightDetectionAndRanging,简称"LiDAR"),顾名思义就是以激光来探测目标的雷达
    的头像 发表于 12-18 17:18 9571次阅读
    什么是<b class='flag-5'>激光雷达</b>?<b class='flag-5'>激光雷达</b>的构成与分类

    激光雷达测量技术与应用

    激光雷达是一种利用激光束来探测和测量目标物体的雷达技术。它具有测量距离远、分辨率高、速度快、抗干扰能力强等优点,在国防、航天科技、地质勘探、智能驾驶等领域有着广泛的应用。 一、激光雷达
    的头像 发表于 12-15 11:03 1090次阅读

    测绘用激光雷达芯片哪些

    测绘用激光雷达芯片是激光雷达(LiDAR,Light Detection and Ranging)系统中不可或缺的一部分。在测绘领域,激光雷达技术被广泛应用于地形测绘、城市建模、无人驾驶、无人航空器
    的头像 发表于 12-13 15:30 974次阅读

    单线激光雷达和多线激光雷达区别

    单线激光雷达和多线激光雷达区别  单线激光雷达和多线激光雷达是两种常用的激光雷达技术。它们在激光
    的头像 发表于 12-07 15:48 4231次阅读

    什么是激光雷达3D SLAM技术?

    什么是激光雷达3DSLAM?在了解这个概念之前,我们首先需要弄懂什么是“SLAM”。SLAM,英文是SimultaneousLocalizationandMapping,意思是即时定位与建图。通俗
    的头像 发表于 11-25 08:23 1539次阅读
    什么是<b class='flag-5'>激光雷达</b>3D <b class='flag-5'>SLAM</b>技术?