0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

OpenAI又放大招:连接文本与图像的CLIP

新机器视觉 来源:AI科技评论 作者:AI科技评论 2021-04-18 10:42 次阅读

2020年,通用模型产生了经济价值,特别是GPT-3,它的出现证明了大型语言模型具有惊人的语言能力,并且在执行其他任务方面也毫不逊色。

2021年,OpenAI 联合创始人 Ilya Sutskever预测语言模型会转向视觉领域。他说:“下一代模型,或许可以针对文本输入,从而编辑和生成图像。”

cbdba506-9fbb-11eb-8b86-12bb97331649.png

听话听音!OpenAI 践行了这一想法,几个小时前,OpenAI通过官方推特发布了两个崭新的网络,一个叫DALL-E(参见今天推送的头条),能够通过给定的文本创建出图片;一个叫CLIP,能够将图像映射到文本描述的类别中。

其中,CLIP可以通过自然语言监督有效学习视觉概念,从而解决目前深度学习主流方法存在的几个问题:

1.需要大量的训练数据集,从而导致较高的创建成本。

2.标准的视觉模型,往往只擅长一类任务,迁移到其他任务,需要花费巨大的成本。

3.在基准上表现良好的模型,在测试中往往不尽人意。

具体而言,OpenAI从互联网收集的4亿(图像、文本)对的数据集,在预训练之后,用自然语言描述所学的视觉概念,从而使模型能够在zero-shot状态下转移到下游任务。这种设计类似于GPT-2和GPT-3的“zero-shot”。

这一点非常关键,因为这意味着,可以不直接针对基准进行优化,同时表现出了优越的性能:稳健性差距(robustness gap)缩小了75%,性能和ResNet507相当。换句话说。无需使用其训练的128万个训练样本中的任何一个,即可与原始ResNet-50 在 Image Net Zero-shot的精确度相匹配。

cc10765a-9fbb-11eb-8b86-12bb97331649.png

如上图所示,虽然两个模型在ImageNet测试集上的准确度相差无几,但CLIP的性能更能代表在非ImageNet设置下的表现。

CLIP网络中做了大量的工作是关于zero-shot 迁移的学习、自然语言监督、多模态学习。其实,关于零数据学习的想法可以追溯到十年前,但是最近在计算机视觉中火了起来。零数据学习的一个重点是:利用自然语言作为灵活的预测空间,从而实现泛化和迁移。另外,在2013年,斯坦福大学的Richer Socher通过训练CIFAR-10上的一个模型,在词向量嵌入空间中进行预测,并表明模型可以预测两个“未见过”的类别。Richer的工作提供了一个概念证明。

CLIP是过去一年,从自然语言监督中学习视觉表征工作中的一部分。CLIP使用了更现代的架构,如Transformer,包括探索自回归语言建模的Virtex,研究掩蔽语言建模的ICMLM等等。

1

方法

前面也提到,CLIP训练的数据来源于互联网上4亿数据对。用这些数据,CLIP需要完成的任务是:给定一幅图像,在32,768个随机抽样的文本片段中,找到能够匹配的那一个。

完成这个任务,需要CLIP模型学会识别图像中的各种视觉概念,并将概念和图片相关联。因此,CLIP模型可以应用于几乎任意的视觉分类任务。

例如,如果一个数据集的任务是对狗与猫的照片进行分类,而CLIP模型预测 “一张狗的照片 ”和 “一张猫的照片 ”这两个文字描述哪个更匹配。

cc99980e-9fbb-11eb-8b86-12bb97331649.png

如上图所示,CLIP网络工作流程:预训练图编码器和文本编码器,以预测数据集中哪些图像与哪些文本配对。然后,将CLIP转换为zero-shot分类器。

此外,将数据集的所有类转换为诸如“一只狗的照片”之类的标签,并预测最佳配对的图像。

总体而言,CLIP能够解决:

1.昂贵的数据集:ImageNet中1400万张图片的标注,动用了25,000名劳动力。相比之下,CLIP使用的是已经在互联网上公开提供的文本-图像对。自我监督学习、对比方法、自我训练方法和生成式建模也可以减少对标注图像的依赖。

2.任务单一:CLIP可以适用于执行各种视觉分类任务,而不需要额外的训练。

3.实际应用性能不佳:深度学习中“基准性能”与“实际性能”之间存在差距是一直以来的“痛”。这种差距之所以会出现,是因为模型“作弊”,即仅优化其在基准上的性能,就像一个学生仅仅通过研究过去几年的试题就能通过考试一样。

CLIP模型可以不必在数据上训练,而是直接在基准上进行评估,因此无法以这种方式来“作弊”。此外,为了验证“作弊的假设”,测量了CLIP在有能力“研究” ImageNet时性能会如何变化。

当线性分类器根据CLIP的特性安装时,线性分类器能够将CLIP在ImageNet测试仪上的准确性提高近10%。但是,在评估“鲁棒性”的性能时,这个分类器在其余7个数据集的评估套件中并没有取得更好的平均表现。

2

优势1. CLIP非常高效

CLIP从未经过滤的、变化多端的、极其嘈杂的数据中学习,且希望能够在零样本的情况下使用。从GPT-2和GPT-3中,我们可以知道,基于此类数据训练的模型可以实现出色的零样本性能;但是,这类模型需要大量的训练计算。为了减少所需的计算,我们专注研究算法,以提高我们所使用方法的训练效率。我们介绍了两种能够节省大量计算的算法。

第一个算法是采用对比目标(contrastive objective),将文本与图像连接起来。最初我们探索了一种类似于VirTex的图像到文本的方法,但这种方法在拓展以实现最先进的性能时遇到了困难。在一些小型与中型实验中,我们发现CLIP所使用的对比目标在零样本ImageNet分类中的效率提高了4到10倍。

第二个算法是采用Vision Transformer,这个算法使我们的计算效率比在标准ResNet上提高了3倍。最后,性能最好的CLIP模型与现有的大规模图像模型相似,在256个GPU上训练了2周。我们最初是尝试训练图像到字幕的语言模型,但发现这种方法在零样本迁移方面遇到了困难。在16 GPU的日实验中,一个语言在训练了4亿张图像后,在ImageNet上仅达到16%的准确性。CLIP的效率更高,且以大约快10倍的速度达到了相同的准确度。

2. CLIP灵活且通用

由于CLIP模型可以直接从自然语言中学习许多视觉概念,因此它们比现有的ImageNet模型更加灵活与通用。我们发现,CLIP模型能够在零样本下执行许多不同的任务。为了验证这一点,我们在30多个数据集上测量了CLIP的零样本性能,任务包括细粒度物体分类,地理定位,视频中的动作识别和OCR等。其中,学习OCR时,CLIP取得了在标准ImageNet模型中所无法实现的令人兴奋的效果。

比如,我们对每个零样本分类器的随机非樱桃采摘预测进行了可视化。这一发现也反映在使用线性探测学习评估的标准表示中。

我们测试了26个不同的迁移数据集,其中最佳的CLIP模型在20个数据集上的表现都比最佳的公开ImageNet模型(Noisy Student EfficientNet-L2)出色。

在27个测试任务的数据集中,测试任务包括细粒度物体分类,OCR,视频活动识别以及地理定位,我们发现CLIP模型学会了使用效果更广泛的图像表示。与先前的10种方法相比,CLIP模型的计算效率也更高。

3

局限性

尽管CLIP在识别常见物体上的表现良好,但在一些更抽象或系统的任务(例如计算图像中的物体数量)和更复杂的任务(例如预测照片中距离最近的汽车有多近)上却遇到了困难。

在这两个数据集上,零样本CLIP仅仅比随机猜测要好一点点。与其他模型相比,在非常细粒度分类的任务上,例如区分汽车模型、飞机型号或花卉种类时,零样本CLIP的表现也不好。

对于不包含在其预训练数据集内的图像,CLIP进行泛化的能力也很差。

例如,尽管CLIP学习了功能强大的OCR系统,但从MNIST数据集的手写数字上进行评估时,零样本CLIP只能达到88%的准确度,远远低于人类在数据集中的99.75%精确度。

最后,我们观察到,CLIP的零样本分类器对单词构造或短语构造比较敏感,有时还需要试验和错误“提示引擎”才能表现良好。

4

更广的影响

CLIP允许人们设计自己的分类器,且无需使用任务特定的训练数据。

设计分类的方式会严重影响模型的性能和模型的偏差。例如,我们发现,如果给定一组标签,其中包括Fairface种族标签和少数令人讨厌的术语,例如“犯罪”,“动物”等,那么该模型很可能将大约32.3%的年龄为0至20岁的人的图像化为糟糕的类别。但是,当我们添加“儿童”这一类别时,分类比率将下降到大约8.7%。

此外,由于CLIP不需要任务特定的训练数据,因此它可以更轻松地解锁某些任务。

一些任务可能会增加隐私或监视相关的风险,因此我们通过研究CLIP在名人识别方面的表现来探索这一担忧。对100个名人图像进行识别时,CLIP实际分类的准确率最高为59.2%,对1000个名人进行识别时,准确率最高为43.3%。值得注意的是,尽管通过任务不可知的预训练可以达到这些效果,但与广泛使用的生产级别模型相比,该性能并不具有竞争力。

5

结论

借助CLIP,我们测试了互联网的自然语言上与任务无关的预训练(这种预训练为NLP的最新突破提供了动力)是否可以用来改善其他领域的深度学习性能。

目前,CLIP应用于计算机视觉所取得的效果令我们非常兴奋。像GPT家族一样,CLIP在预训练期间学习了我们通过零样本迁移所展示的各种任务。

CLIP在ImageNet上的表现也令人惊喜,其中零样本评估展示了CLIP模型的强大功能。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 语言模型
    +关注

    关注

    0

    文章

    532

    浏览量

    10300
  • 数据集
    +关注

    关注

    4

    文章

    1208

    浏览量

    24744
  • OpenAI
    +关注

    关注

    9

    文章

    1102

    浏览量

    6594

原文标题:OpenAI又放大招:连接文本与图像的CLIP,在ImageNet上效果媲美ResNet50

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    OpenAI暂不推出Sora视频生成模型API

    OpenAI近日宣布,目前暂无推出其视频生成模型Sora的应用程序接口(API)的计划。Sora模型能够基于文本图像生成视频,引发了广泛关注。然而,由于访问量远超预期,OpenAI
    的头像 发表于 12-20 14:23 166次阅读

    请问TPA3244,RESET FAULT CLIP_OTW怎么跟MCU连接

    TPA3244,RESET FAULT CLIP_OTW,怎么跟MCU连接,还有我直接上电,没有MUTE控制会不会有PO PO 声
    发表于 10-14 06:38

    TAS5630电路PBTL接法,CLIP灯无法灭是怎么回事?

    TAS5630电路PBTL接法,正在测试时CLIP信号灯亮(CLIP低电平),输出为0,无论重新开机或人工复位,均不能使得CLIP灯灭,请大侠教我。谢谢。
    发表于 09-03 07:58

    OpenAI承认正研发ChatGPT文本水印

    据外媒报道,OpenAI已经证实正在研究一种用于ChatGPT的文本水印技术,该技术已经能够高精度地识别出由ChatGPT生成的文章,但是在面对诸如翻译系统、重写或特殊字符插入等篡改手段时该技术
    的头像 发表于 08-05 15:56 985次阅读

    OpenAI正深入探索文本水印技术的前沿领域

    8月5日最新资讯透露,OpenAI正积极投身于文本水印技术的尖端探索,但与此同时,公司也坦诚地指出了这一创新领域所面临的艰巨技术障碍与未解之谜。
    的头像 发表于 08-05 12:59 571次阅读

    玩具反斗城使用OpenAI的Sora文本转视频工具制作"品牌电影"

    你对玩具反斗城(Toys“R”Us)有美好的回忆吗?据悉,该玩具零售巨头正借助人工智能技术谋求品牌复兴,近日发布了一则声称使用OpenAI的Sora文本转视频工具制作的"品牌电影",引发业界关注
    的头像 发表于 07-03 16:40 785次阅读

    OpenAI发布GPT-4o模型,支持文本图像、音频信息,速度提升一倍,价格不变

     此外,该模型还具备128K的上下文记忆能力,知识截止日期设定为2023年10月。微软方面也宣布,已通过Azure OpenAI服务提供GPT-4o的预览版。
    的头像 发表于 05-14 17:12 867次阅读

    OpenAI发布GPT-4o模型,供全体用户免费使用

    OpenAI首席技术官穆里·穆拉蒂(Muri Murati)指出,GPT-4o具备与GPT-4相同的智能水平,且在文本图像及语音处理方面有显著进步。
    的头像 发表于 05-14 11:17 532次阅读

    OpenAI发布图像检测分类器,可区分AI生成图像与实拍照片

    OpenAI介绍,初步测试结果表明,该分类器在辨别非AI生成图像与DALL·E 3生成图像时,成功率高达近98%,仅有不到0.5%的非AI图像误判为DALL·E 3生成。此外,该工具
    的头像 发表于 05-09 09:57 483次阅读

    Mistral发布Mistral Large旗舰模型,但没有开源

    昨夜,被称为“法国版 OpenAI”的 Mistral AI 再放大招,正式发布 Mistral Large 旗舰模型,并且推出对标 ChatGPT 的对话产品:Le Chat,直接杀到 OpenAI 家门口。
    的头像 发表于 02-27 13:34 796次阅读
    Mistral发布Mistral Large旗舰模型,但没有开源

    什么是OpenAI Sora?最佳OpenAI Sora替代推荐

    NightCafe Creator是一款AI艺术生成器应用程序,可以让用户使用各种技术(如神经风格转换和文本图像AI)创建令人惊叹的AI生成艺术品。
    的头像 发表于 02-22 11:22 1459次阅读

    谷歌Gemini 1.5深夜爆炸上线,史诗级多模态硬刚GPT-5!最强MoE首破100万极限上下文纪录

    没几天,谷歌又放大招了。就在刚刚,谷歌DeepMind首席科学家JeffDean,以及联创兼CEO的DemisHassabis激动地
    的头像 发表于 02-19 12:28 742次阅读
    谷歌Gemini 1.5深夜爆炸上线,史诗级多模态硬刚GPT-5!最强MoE首破100万极限上下文纪录

    OpenAI要约收购协议已完成 OpenAI估值超800亿美元

    。可以说OpenAI 目前是全球最有价值初创科技公司之一。 而且在2月16日OpenAI还推出了新的文生视频模型Sora,Sora模型可以把简短的文本描述转换为长达60秒的高清视频,这使得AI更具想象空间。
    的头像 发表于 02-18 18:19 1190次阅读

    图像放大后,图像中心显示在 ,图像框中心,

    大家好,视觉 显示 相机图像时,点击 放大工具放大后,如何将大图像的中心 对准图像显示框的中心,,
    发表于 01-24 15:49