成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。
近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。
射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波。。。等。
在 WiFi 产品的开发过程中,射频电路的布线(RF Circuit Layout Guide)是极为关键的一个过程。很多时候,我们可能在原理上已经设计的很完善,但是在实际的制板,上件过后发现很不理想,实际上这些都是布线(Layout)做的不够完善的原因。本文将以一个无线网卡的布线实例及本人的一点工作经验为大家讲解一下射频电路在布线中应该注意的一些问题。
电路板的叠构(PCB Stack Up)
在进行布线之前,我们首先要确定电路板的叠构,就像盖房子要先有房子的墙壁。电路板的叠构的确定与电路设计的复杂度,电磁兼容的考虑等很多因素有关。下图给出了四层板,六层板和八层板的常用叠构方式。
在无线网卡的PCB叠构中,基本上不会出现单面板的情况,所以本文也不会对单面板的情况加以讨论。两层板设计中应该注意的问题
在四层板的设计中,我们一般会将第二层作为完整的地平面,同时,也会把重要的信号线走在顶层(当然包括射频走线),以便于很好的控制阻抗。在六层板或者更多层板的设计中,我们同样会将第二层作为完整的地平面,然后在顶层走最重要的信号线。
PS:可以使用Polar计算单端阻抗与阻抗等,有些Layout软件自身就集成了阻抗计算器,如Allegro。
阻抗控制
在我们进行原理设计与仿真之后,在Layout中很值得注意的一件事情就是阻抗控制。众所周知,我们应该尽量保证走线的特征是50欧姆,这主要和线宽有关,在本实例中,是两层半,在Polar中采用Surface Coplanar Line模型进行阻抗的计算,我们可以得到一组比较理想的值:Height(H)=39.6mil,Track(W)=30mil,Track(W1)=30mil,Thickness=1OZ=1.4mil, Separation(S)=7mil, Dielectric(Er)=4.2,对应的特征阻抗是52.14欧姆,符合要求。如下图中高亮的线就是这样的一条射频走线。
射频元器件的摆放
相信做过射频设计的人都应该知道,我们应该尽可能的使走线的长度较短,元器件摆放的越紧凑越好(特殊要求除外),同时,也会尽可能的保证元器件的摆放对布线很有利(不要使走线绕来绕去的)。如下图,是射频功率放大器(PA,Power Amplifier)的周围器件的摆放,我们看到,元器件之间的距离很小。
射频走线应该注意的问题
如前所述,射频走线的长度要尽量短,线宽严格按照计算好的值去设定。在走线是尤其要注意的是,射频走线中不要有任何带有尖状的折点,在走线的转折处,最好要用弧线来实现,如下图
其次,在多层板的走线中,有可能重要的射频线要产生不可避免的交叉,这时我们就要使用我们最不想使用的东西:过孔。这样,会有部分射频信号线走到底层甚至中间层,但无论是哪一层,射频走线一定会有参考平面,这时一个值得注意的问题就是不要跨层,或者说不要使地平面不连续。
过孔的放置
过孔的放置真的是一件比较复杂的事情,本文只讨论那种接地的过孔。
首先,射频走线的旁边的地线最好能通过过孔打穿,接到底层或者中间层的地平面上,这样可以是任何干扰信号或者辐射有最短的到地的通路,但是,过孔与射频信号线的距离又不能太近,否则会严重影响射频信号质量,在实际的设计过程中可灵活把握,如下图,我们看到,高亮的信号线两层分布着很多过孔。
其次,在面积较大的地平面处,我们通常会放置很多的过孔用于连接不同层的地。这在射频电路的布线中,要注意的就是大过孔要没有规律的打,最好能弄成菱形的,这样可以最大限度的抑制各种干扰。
二、射频电路电源设计注意事项
(1)电源线是EMI 出入电路的重要途径。通过电源线,外界的干扰可以传入内部电路,影响RF电路指标。为了减少电磁辐射和耦合,要求DC-DC模块的一次侧、二次侧、负载侧环路面积最小。电源电路不管形式有多复杂,其大电流环路都要尽可能小。电源线和地线总是要很近放置。
(2)如果电路中使用了开关电源,开关电源的外围器件布局要符合各功率回流路径最短的原则。滤波电容要靠近开关电源相关引脚。使用共模电感,靠近开关电源模块。
(3)单板上长距离的电源线不能同时接近或穿过级联放大器(增益大于45dB)的输出和输入端附近。避免电源线成为RF信号传输途径,可能引起自激或降低扇区隔离度。长距离电源线的两端都需要加上高频滤波电容,甚至中间也加高频滤波电容。
(4)RF PCB的电源入口处组合并联三个滤波电容,利用这三种电容的各自优点分别滤除电源线上的低、中、高频。例如:10uf,0.1uf,100pf。并且按照从大到小的顺序依次靠近电源的输入管脚。
(5)用同一组电源给小信号级联放大器馈电,应当先从末级开始,依次向前级供电,使末级电路产生的EMI 对前级的影响较小。且每一级的电源滤波至少有两个电容:0.1uf,100pf。当信号频率高于1GHz时,要增加10pf滤波电容。
(6)常用到小功率电子滤波器,滤波电容要靠近三极管管脚,高频滤波电容更靠近管脚。三极管选用截止频率较低的。如果电子滤波器中的三极管是高频管,工作在放大区,外围器件布局又不合理,在电源输出端很容易产生高频振荡。线性稳压模块也可能存在同样的问题,原因是芯片内存在反馈回路,且内部三极管工作在放大区。在布局时要求高频滤波电容靠近管脚,减小分布电感,破坏振荡条件。
(7)PCB的POWER部分的铜箔尺寸符合其流过的最大电流,并考虑余量(一般参考为1A/mm线宽)。
(8)电源线的输入输出不能交叉。
(9)注意电源退耦、滤波,防止不同单元通过电源线产生干扰,电源布线时电源线之间应相互隔离。电源线与其它强干扰线(如CLK)用地线隔离。
(10)小信号放大器的电源布线需要地铜皮及接地过孔隔离,避免其它EMI干扰窜入,进而恶化本级信号质量。
(11)不同电源层在空间上要避免重叠。主要是为了减少不同电源之间的干扰,特别是一些电压相差很大的电源之间,电源平面的重叠问题一定要设法避免,难以避免时可考虑中间隔地层。
(12)PCB板层分配便于简化后续的布线处理,对于一个四层PCB板(WLAN中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。
第二层采用连续的地平面布局对于建立阻抗受控的RF信号通路非常必要,它还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得两层之间的耦合最小。当然,也可以采用其它板层定义的方式(特别是在电路板具有不同的层数时),但上述结构是经过验证的一个成功范例。
(13)大面积的电源层能够使Vcc布线变得轻松,但是,这种结构常常是引发系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。反之,如果使用星型拓扑则会减轻不同电源引脚之间的耦合。
上图给出了星型连接的Vcc布线方案,该图取自MAX2826 IEEE 802.11a/g收发器的评估板。图中建立了一个主Vcc节点,从该点引出不同分支的电源线,为RF IC的电源引脚供电。每个电源引脚使用独立的引线在引脚之间提供了空间上的隔离,有利于减小它们之间的耦合。另外,每条引线还具有一定的寄生电感,这恰好是我们所希望的,它有助于滤除电源线上的高频噪声。
使用星型拓扑Vcc引线时,还有必要采取适当的电源去耦,而去耦电容存在一定的寄生电感。事实上,电容等效为一个串联的RLC电路,电容在低频段起主导作用,但在自激振荡频率(SRF):
之后,电容的阻抗将呈现出电感性。由此可见,电容器只是在频率接近或低于其SRF时才具有去耦作用,在这些频点电容表现为低阻。
给出了不同容值下的典型S11参数,从这些曲线可以清楚地看到SRF,还可以看出电容越大,在较低频率处所提供的去耦性能越好(所呈现的阻抗越低)。
在Vcc星型拓扑的主节点处最好放置一个大容量的电容器,如2.2μF。该电容具有较低的SRF,对于消除低频噪声、建立稳定的直流电压很有效。IC的每个电源引脚需要一个低容量的电容器(如10nF),用来滤除可能耦合到电源线上的高频噪声。
对于那些为噪声敏感电路供电的电源引脚,可能需要外接两个旁路电容。例如:用一个10pF电容与一个10nF电容并联提供旁路,可以提供更宽频率范围的去耦,尽量消除噪声对电源电压的影响。每个电源引脚都需要认真检验,以确定需要多大的去耦电容以及实际电路在哪些频点容易受到噪声的干扰。
良好的电源去耦技术与严谨的PCB布局、Vcc引线(星型拓扑)相结合,能够为任何RF系统设计奠定稳固的基础。尽管实际设计中还会存在降低系统性能指标的其它因素,但是,拥有一个“无噪声”的电源是优化系统性能的基本要素。
1 层分布
1.1 双面板,顶层为信号层,底面为地平面。
1.2 四层板,顶层为信号层,第二层为地平面,第三层走电源、控制线。特殊情况下(如 射频信号线要穿过屏蔽壁),在第三层要走一些射频信号线。每层均要求大面积敷地。
1.2 四层板,顶层为信号层,第二层为地平面,第三层走电源、控制线。特殊情况下(如 射频信号线要穿过屏蔽壁),在第三层要走一些射频信号线。每层均要求大面积敷地。
2 接地
2.1 大面积接地 为减少地平面的阻抗,达到良好的接地效果,建议遵守以下要求:a) 射频 PCB 的接地要求大面积接地;b) 在微带印制电路中,底面为接地面,必须确保光滑平整;c) 要将地的接触面镀金或镀银,导电良好,以降低地线最抗;
d) 使用紧固螺钉,使其与屏蔽腔体紧密结合,紧固螺钉的间距小于λ/20(依具体情 况而定)。
2.2 分组就近接地 按照电路的结构分布和电流的大小将整个电路分为成相对独立的几组,各组电路就 近接地形成回路,要调整各组内高频滤波电容方向,缩小电源回路。注意接地线要短而直, 禁止交叉重叠,减少公共地阻抗所产生的干扰。
2.3 射频器件的接地 表面贴射频器件和滤波电容需要接地时,为减少器件接地电感,要求:a) 至少要有 2 根线接铺地铜箔;b) 用至少 2 个金属化过孔在器件管脚旁就近接地。c) 增大过孔孔径和并联若干过孔。d) 有些元件的底部是接地的金属壳,要在元件的投影区内加一些接地孔,表面层 不得布线。
2.4 微带电路的接地 微带印制电路的终端单一接地孔直径必须大于微带线宽,或采用终端大量成排密布小孔 的方式接地。
2.5 接地工艺性要求
a) 在工艺允许的前提下,可缩短焊盘与过孔之间的距离;
b) 在工艺允许的前提下,接地的大焊盘可直接盖在至少 6 个接地过孔上(具体数量因 焊盘大小而异);
c) 接地线需要走一定的距离时,应缩短走线长度,禁止超过λ/20,以防止天线效应 导致信号辐射;
d) 除特殊用途外,不得有孤立铜箔,铜箔上一定要加地线过孔;
e) 禁止地线铜箔上伸出终端开路的线头。
3 屏蔽
3.1 射频信号可以在空气介质中辐射。空间距离越大,工作频率越低,输入输出端的寄 生耦合就越小,隔离度则越大。PCB 典型的空间隔离度约为 50dB。
3.2 敏感电路和强烈辐射源电路要加屏蔽,但如果设计加工有难度时(如空间或成本限 制等),可不加,但要做试验最终决定。这些电路有:
a) 接收电路前端是敏感电路,信号很小,要采用屏蔽。
b) 对射频单元和中频单元须加屏蔽。接收通道中频信号会对射频信号产生较大干扰, 反之,发射通道的射频信号对中频信号也会造成辐射干扰。
c) 振荡电路:强烈辐射源,对本振源要单独屏蔽,由于本振电平较高,对其他单元形 成较大的辐射干扰。
d) 功放及天馈电路:强烈辐射源,信号很强,要屏蔽。
e) 数字信号处理电路:强烈辐射源,高速数字信号的陡峭的上下沿会对模拟的射频信 号产生干扰。
f) 级联放大电路:总增益可能会超过输出到输入端的空间隔离度,这样就满足了振荡 条件之一,电路可能自激。如果腔体内的电路同频增益超过 30-50dB,必须在 PCB 板 上焊接或安装金属屏蔽板,增加隔离度。实际设计时要综合考虑频率、功率、增益情况 决定是否加屏蔽板。
g) 级联的滤波、开关、衰减电路:在同一个屏蔽腔内,级联滤波电路的带外衰减、级 联开关电路的隔离度、级联衰减电路的衰减量必须小于 30-50dB。如果超过这个值, 必须在 PCB 板上焊接或安装金属屏蔽板,增加隔离度。实际设计时要综合考虑频率、功 率、增益情况决定是否加屏蔽板。
h) 收发单元混排时应屏蔽。
i) 数模混排时,对时钟线要包地铜皮隔离或屏蔽。
4 屏蔽材料和方法
4.1 常用的屏蔽材料均为高导电性能材料,如铜板、铜箔、铝板、铝箔。钢板或金属镀 层、导电涂层等。
4.2 静电屏蔽主要用于防止静电场和恒定磁场的影响。应注意两个基本要点,即完善的 屏蔽体和良好的接地性。
4.3 电磁屏蔽主要用于防止交变磁场或交变电磁场的影响,要求屏蔽体具有良好的导电 连续性,屏蔽体必须与电路接在共同的地参考平面上,要求 PCB 中屏蔽地与被屏蔽电路地要 尽量的接近。
4.4 对某些敏感电路,有强烈辐射源的电路可以设计一个在 PCB 上焊接的屏蔽腔,PCB 在 设计时要加上“过孔屏蔽墙”,就是在 PCB 上与屏蔽腔壁紧贴的部位加上接地的过孔。要求 如下:
a) 有两排以上的过孔;
b) 两排过孔相互错开;
c) 同一排的过孔间距要小于λ/20;
d) 接地的 PCB 铜箔与屏蔽腔壁压接的部位禁止有阻焊。
4.5 射频信号线在顶层穿过屏蔽壁时,要在屏蔽腔相应位置开一个槽门,门高大于 0.5mm, 门宽要保证安装屏蔽壁后信号线与屏蔽体间的距离大于 1mm。
5 屏蔽罩设计
5.1 金属屏蔽腔的基本结构
5.1.1 此类屏蔽罩被广泛使用,如图 27。材料一般为薄的铝合金,制造工艺一般采用冲 压折弯或压力铸造工艺,这种屏蔽罩有较多的螺钉孔,便于螺钉固定。部分需铝合金盖子和 吸波材料增强屏蔽性能。射频 PCB 需装在屏蔽腔内,要选择合适的屏蔽腔尺寸,使其最低 谐振频率远高于工作频率,最好 10 倍以上,详见附录 G“金属屏蔽腔的尺寸设计”。
5.1.2 屏蔽腔的高度一般为第一层介质厚度 15-20 倍或以上,在屏蔽腔面积一定时,要 提高屏蔽腔的最低谐振频率,需增加长宽比,避免正方形的腔体,如图 。
5.2 金属屏蔽腔对 PCB 布局的工艺要求
5.2.1 屏蔽罩与 PCB 板接触的罩体设计时应考虑 PCB bottom 面的器件高度,特别是插 件器件引脚伸出的高度。
5.2.2 需考虑螺丝禁布区的大小,防止组装时损坏表层线路或器件。射频功放板由于结 构尺寸的限制,其单板尺寸相对较小,故一般要求螺钉安装空间(禁布区)至少在安装孔焊 盘外侧。螺钉安装空间见表 5
.5.2.3 金属屏蔽罩自身成本和装配成本很贵,并且外形不规则的金属屏蔽罩在制造时很 难保证高精度和高平整性,又使元器件布局受到一些限制;金属屏蔽罩不利于元器件更换和 故障定位。
5.2.4 尽可能保证屏蔽罩的完整非常重要,进入金属屏蔽罩的数字信号线应该尽可能走 内层,RF 信号线可以从金属屏蔽罩底部的小缺口和地缺口处的布线层上走出去,不过缺口 处周围要尽可能地多布一些地,不同层上的地可通过多个过孔连在一起。
5.2.5 为保证装配和返修,金属屏蔽罩周围5mm范围内不能有超过其高度的器件,Chip 小器件到屏蔽罩的距离应该2mm以上,其它器件距离要求3mm以上,并且放置朝向最好 符合方便维修方向。
5.2.6 金属屏蔽罩内部不能有超过其高度的器件,并且器件顶部到屏蔽罩面的距离要符 合安全规范要求。
5.2.7 需考虑 SMA 微带插座与 PCB 板接触时的高度匹配,否则焊接可靠性存在影响。如图29所示,设计时须考虑PCB板厚的公差(±10%),金属屏蔽腔的加工误差(±0.05mm)。建议 SMA 微带插座与 PCB 板的高度间隙不超过 0.5mm,插座与焊盘不允许有明显偏差。
5.2.8 由于功放板设计的特殊情况,容许 2 块单板之间信号穿过屏蔽罩,并用飞线连接, 如图
-
射频
+关注
关注
104文章
5551浏览量
167557 -
电路板
+关注
关注
140文章
4907浏览量
97435 -
蓝牙设备
+关注
关注
0文章
39浏览量
6712
发布评论请先 登录
相关推荐
评论