0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

教你们如何使用eBPF追踪LINUX内核

Linux阅码场 来源:Linux内核之旅 作者:梁金荣 2021-04-20 11:26 次阅读

1. 前言

我们可以使用BPF对Linux内核进行跟踪,收集我们想要的内核数据,从而对Linux中的程序进行分析和调试。与其它的跟踪技术相比,使用BPF的主要优点是几乎可以访问Linux内核和应用程序的任何信息,同时,BPF对系统性能影响很小,执行效率很高,而且开发人员不需要因为收集数据而修改程序。

本文将介绍保证BPF程序安全的BPF验证器,然后以BPF程序的工具集BCC为例,分享kprobes和tracepoints类型的BPF程序的使用及程序编写示例。

2. BPF验证器

BPF借助跟踪探针收集信息并进行调试和分析,与其它依赖于重新编译内核的工具相比,BPF程序的安全性更高。重新编译内核引入外部模块的方式,可能会因为程序的错误而产生系统奔溃。BPF程序的验证器会在BPF程序加载到内核之前分析程序,消除这种风险。

BPF验证器执行的第一项检查是对BPF虚拟机加载的代码进行静态分析,目的是确保程序能够按照预期结束。验证器在进行第一项检查时所做工作为:

程序不包含控制循环;

程序不会执行超过内核允许的最大指令数;

程序不包含任何无法到达的指令;

程序不会超出程序界限。

BPF验证器执行的第二项检查是对BPF程序进行预运行,所做工作为:

分析BPF程序执行的每条指令,确保不会执行无效指令;

检查所有内存指针是否可以正确访问和引用;

预运行将程序控制流的执行结果通知验证器,确保BPF程序最终都会执行BPF_EXIT指令。

3. 内核探针 kprobes

内核探针可以跟踪大多数内核函数,并且系统损耗最小。当跟踪的内核函数被调用时,附加到探针的BPF代码将被执行,之后内核将恢复正常模式。

3.1 kprobes类BPF程序的优缺点

优点 动态跟踪内核,可跟踪的内核函数众多,能够提取内核绝大部分信息。

缺点 没有稳定的应用程序二进制接口,可能随着内核版本的演进而更改。

3.2 kprobes

kprobe程序允许在执行内核函数之前插入BPF程序。当内核执行到kprobe挂载的内核函数时,先运行BPF程序,BPF程序运行结束后,返回继续开始执行内核函数。下面是一个使用kprobe的bcc程序示例,功能是监控内核函数kfree_skb函数,当此函数触发时,记录触发它的进程pid,进程名字和触发次数,并打印出触发此函数的进程pid,进程名字和触发次数:

#!/usr/bin/python3

# coding=utf-8

from __future__ import print_function

from bcc import BPF

from time import sleep

# define BPF program

bpf_program = “”“

#include 《uapi/linux/ptrace.h》

struct key_t{

u64 pid;

};

BPF_HASH(counts, struct key_t);

int trace_kfree_skb(struct pt_regs *ctx) {

u64 zero = 0, *val, pid;

pid = bpf_get_current_pid_tgid() 》》 32;

struct key_t key = {};

key.pid = pid;

val = counts.lookup_or_try_init(&key, &zero);

if (val) {

(*val)++;

}

return 0;

}

”“”

def pid_to_comm(pid):

try:

comm = open(“/proc/%s/comm” % pid, “r”).read().rstrip()

return comm

except IOError:

return str(pid)

# load BPF

b = BPF(text=bpf_program)

b.attach_kprobe(event=“kfree_skb”, fn_name=“trace_kfree_skb”)

# header

print(“Tracing kfree_skb.。。 Ctrl-C to end.”)

print(“%-10s %-12s %-10s” % (“PID”, “COMM”, “DROP_COUNTS”))

while 1:

sleep(1)

for k, v in sorted(b[“counts”].items(),key = lambda counts: counts[1].value):

print(“%-10d %-12s %-10d” % (k.pid, pid_to_comm(k.pid), v.value))

该bcc程序主要包括两个部分,一部分是python语言,一部分是c语言。python部分主要做的工作是BPF程序的加载和操作BPF程序的map,并进行数据处理。c部分会被llvm编译器编译为BPF字节码,经过BPF验证器验证安全后,加载到内核中执行。python和c中出现的陌生函数可以查下面这两个手册,在此不再赘述:

python部分遇到的陌生函数可以查这个手册: 点此跳转

c部分中遇到的陌生函数可以查这个手册: 点此跳转

需要说明的是,该BPF程序类型是kprobe,它是在这里进行程序类型定义的:

b.attach_kprobe(event=“kfree_skb”, fn_name=“trace_kfree_skb”)

b.attach_kprobe()指定了该BPF程序类型为kprobe;

event=“kfree_skb”指定了kprobe挂载的内核函数为kfree_skb;

fn_name=“trace_kfree_skb”指定了当检测到内核函数kfree_skb时,执行程序中的trace_kfree_skb函数;

BPF程序的第一个参数总为ctx,该参数称为上下文,提供了访问内核正在处理的信息,依赖于正在运行的BPF程序的类型。CPU将内核正在执行任务的不同信息保存在寄存器中,借助内核提供的宏可以访问这些寄存器,如PT_REGS_RC。

程序运行结果如下:

e2411330-a100-11eb-8b86-12bb97331649.png

3.3 kretprobes

相比于内核探针kprobe程序,kretprobe程序是在内核函数有返回值时插入BPF程序。当内核执行到kretprobe挂载的内核函数时,先执行内核函数,当内核函数返回时执行BPF程序,运行结束后返回。

以上面的BPF程序为例,若要使用kretprobe,可以这样修改:

b.attach_kretprobe(event=“kfree_skb”, fn_name=“trace_kfree_skb”)

b.attach_kretprobe()指定了该BPF程序类型为kretprobe,kretprobe类型的BPF程序将在跟踪的内核函数有返回值时执行BPF程序;

event=“kfree_skb”指定了kretprobe挂载的内核函数为kfree_skb;

fn_name=“trace_kfree_skb”指定了当内核函数kfree_skb有返回值时,执行程序中的trace_kfree_skb函数;

4. 内核静态跟踪点 tracepoint

tracepoint是内核静态跟踪点,它与kprobe类程序的主要区别在于tracepoint由内核开发人员在内核中编写和修改。

4.1 tracepoint 程序的优缺点

优点 跟踪点是静态的,ABI更稳定,不随内核版本的变化而致不可用。

缺点 跟踪点是内核人员添加的,不会全面涵盖内核的所有子系统。

4.2 tracepoint 可用跟踪点

系统中所有的跟踪点都定义在/sys/kernel/debug/traceing/events目录中:

e24d14fa-a100-11eb-8b86-12bb97331649.png

使用命令perf list 也可以列出可使用的tracepoint点:

e2629bc2-a100-11eb-8b86-12bb97331649.png

对于bcc程序来说,以监控kfree_skb为例,tracepoint程序可以这样写:

b.attach_tracepoint(tp=“skb:kfree_skb”, fn_name=“trace_kfree_skb”)

bcc遵循tracepoint命名约定,首先是指定要跟踪的子系统,这里是“skb:”,然后是子系统中的跟踪点“kfree_skb”:

e29048b0-a100-11eb-8b86-12bb97331649.png

5. 总结

本文主要介绍了保证BPF程序安全的BPF验证器,然后以BPF程序的工具集BCC为例,分享了kprobes和tracepoints类型的BPF程序的使用及程序编写示例。本文分享的是内核跟踪,那么用户空间程序该如何跟踪呢,这将在后面的文章中逐步分享,感谢阅读。

参考资料

若未安装bcc,请参考下方网址进行安装;

https://github.com/iovisor/bcc/blob/master/INSTALL.md

bcc程序编写指导手册

https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md

参考书《Linux内核观测技术 BPF》

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 虚拟机
    +关注

    关注

    1

    文章

    908

    浏览量

    28090
  • python
    +关注

    关注

    56

    文章

    4782

    浏览量

    84453
  • BCC
    BCC
    +关注

    关注

    0

    文章

    10

    浏览量

    7527
  • BPF
    BPF
    +关注

    关注

    0

    文章

    24

    浏览量

    3976

原文标题:梁金荣:使用eBPF追踪LINUX内核

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    deepin社区亮相第19届中国Linux内核开发者大会

    中国 Linux 内核开发者大会,作为中国 Linux 内核领域最具影响力的峰会之一,一直以来都备受瞩目。
    的头像 发表于 10-29 16:35 409次阅读

    详解linux内核的uevent机制

    linux内核中,uevent机制是一种内核和用户空间通信的机制,用于通知用户空间应用程序各种硬件更改或其他事件,比如插入或移除硬件设备(如USB驱动器或网络接口)。uevent表示“用户空间
    的头像 发表于 09-29 17:01 475次阅读

    linux驱动程序如何加载进内核

    Linux系统中,驱动程序是内核与硬件设备之间的桥梁。它们允许内核与硬件设备进行通信,从而实现对硬件设备的控制和管理。 驱动程序的编写 驱动程序的编写是Linux驱动开发的基础。在编
    的头像 发表于 08-30 15:02 380次阅读

    Linux内核测试技术

    Linux 内核Linux操作系统的核心部分,负责管理硬件资源和提供系统调用接口。随着 Linux 内核的不断发展和更新,其复杂性和代码规
    的头像 发表于 08-13 13:42 436次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>测试技术

    Linux内核中的页面分配机制

    Linux内核中是如何分配出页面的,如果我们站在CPU的角度去看这个问题,CPU能分配出来的页面是以物理页面为单位的。也就是我们计算机中常讲的分页机制。本文就看下Linux内核是如何管
    的头像 发表于 08-07 15:51 241次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>中的页面分配机制

    欢创播报 华为宣布鸿蒙内核已超越Linux内核

    1 华为宣布鸿蒙内核已超越Linux内核   6月21日,在华为开发者大会上, HarmonyOS NEXT(鸿蒙NEXT)——真正独立于安卓和iOS的鸿蒙操作系统,正式登场。这是HarmonyOS
    的头像 发表于 06-27 11:30 781次阅读

    使用 PREEMPT_RT 在 Ubuntu 中构建实时 Linux 内核

    盟通技术干货构建实时Linux内核简介盟通技术干货Motrotech如果需要在Linux中实现实时计算性能,进而有效地将Linux转变为RTOS,那么大多数发行版都可以打上名为PREE
    的头像 发表于 04-12 08:36 2215次阅读
    使用 PREEMPT_RT 在 Ubuntu 中构建实时 <b class='flag-5'>Linux</b> <b class='flag-5'>内核</b>

    eBPF动手实践系列三:基于原生libbpf库的eBPF编程改进方案简析

    在上一篇文章《eBPF动手实践系列二:构建基于纯C语言的eBPF项目》中,我们初步实现了脱离内核源码进行纯C语言eBPF项目的构建。libbpf库在早期和
    的头像 发表于 03-19 14:19 765次阅读
    <b class='flag-5'>eBPF</b>动手实践系列三:基于原生libbpf库的<b class='flag-5'>eBPF</b>编程改进方案简析

    C++在Linux内核开发中从争议到成熟

    Linux 内核邮件列表中一篇已有六年历史的老帖近日再次引发激烈讨论 —— 主题是建议将 Linux 内核的开发语言从 C 转换为更现代的 C++。
    的头像 发表于 01-31 14:11 588次阅读
    C++在<b class='flag-5'>Linux</b><b class='flag-5'>内核</b>开发中从争议到成熟

    Ubuntu 24.04 LTS选用Linux 6.8为默认内核

    关于Ubuntu 24.04 LTS使用何种内核版本,一直备受关注。Canonical工程师Andrea Righi昨日宣布,Ubuntu 24.04将默认搭载Linux 6.8内核
    的头像 发表于 01-29 11:27 1012次阅读

    探索aarch64架构上使用ftrace的BPF LSM

    笔者在MacBook M2上搭建Linux虚拟机上开发eBPF程序时,遇到一些LSM eBPF类型程序无法运行的问题,哪怕是5.15内核的ubuntu server,依旧无法正常运行。
    的头像 发表于 01-25 09:30 674次阅读

    rk3399移植Linux内核

    RK3399是一款由中国厂商瑞芯微推出的高性能处理器芯片,被广泛用于嵌入式系统开发。在进行应用程序开发之前,我们需要将Linux内核移植到RK3399上,以支持硬件的驱动和功能。本文将详细介绍如何将
    的头像 发表于 01-08 09:56 1053次阅读

    Linux内核中RCU的用法

    Linux内核中,RCU最常见的用途是替换读写锁。在20世纪90年代初期,Paul在实现通用RCU之前,实现了一种轻量级的读写锁。后来,为这个轻量级读写锁原型所设想的每个用途,最终都使用RCU来实现了。
    的头像 发表于 12-27 09:56 1659次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>中RCU的用法

    获取Linux内核源码的方法

    (ELF1/ELF1S开发板及显示屏)Linux内核是操作系统中最核心的部分,它负责管理计算机硬件资源,并提供对应用程序和其他系统组件的访问接口,控制着计算机的内存、处理器、设备驱动程序和文件系统等
    的头像 发表于 12-13 09:49 622次阅读
    获取<b class='flag-5'>Linux</b><b class='flag-5'>内核</b>源码的方法

    Linux内核自解压过程分析

    uboot完成系统引导以后,执行环境变量bootm中的命令;即,将Linux内核调入内存中并调用do_bootm函数启动内核,跳转至kernel的起始位置。
    的头像 发表于 12-08 14:00 854次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>自解压过程分析