要实现SAE L4/L5的全自动驾驶功能,就需要应用多种传感器冗余系统。摄像头、雷达和激光雷达这三大传感器系统基本是缺一不可。
目前,超声波雷达、毫米波雷达和多摄像头系统已经在高端汽车上应用,随着智能驾驶发展势如破竹,环境感知技术将快速发展,进一步发挥协同作用。虽然传感器仅仅是自动驾驶汽车的一部分,但是市场前景十分广阔。
01. 车载摄像头
车载摄像头是实现众多预警、识别类ADAS功能的基础。在众多ADAS功能中,视觉影像处理系统较为基础,对于驾驶者也更为直观,而摄像头又是视觉影像处理系统的基础,因此车载摄像头对于智能驾驶必不可少。
车道偏离预警(LDW)、前向碰撞预警(FCW)、交通标志识别(TSR)、 车道保持辅助(LKA)、行人碰撞预警(PCW)、全景泊车(SVP)、驾驶员疲劳预警等众多功能都可借助摄像头实现,有的功能甚至只能通过摄像头实现。
车载摄像头价格持续走低,未来单车多摄像头将成为趋势。相对于车载雷达等传感器价格更加低廉,易于普及应用。特斯拉Autopilot 2.0的硬件系统中就包含8个摄像头,未来单车多摄像头将成为趋势。
根据不同ADAS功能的要求,摄像头的安装位置也不尽相同。按摄像头的安装位置不同,可分为前视、侧视、后视和内置四个部分。未来要实现全套ADAS功能,单车需配备至少5个摄像头。
前视摄像头使用频率最高,单一摄像头可实现多重功能。通过算法开发优化,单一前视摄像头可以实现多重功能,如行车记录、车道偏离预警、前向碰撞预警、行人识别等。未来也有望通过算法整合,实现更多ADAS功能。
前视摄像头一般为广角镜头,安装在车内后视镜上或者前挡风玻璃上较高的位置,以实现较远的有效距离。
侧视摄像头代替后视镜将成为趋势。由于后视镜的范围有限,当另一辆在斜后方的车位于这个范围之外就“隐身”,这个范围之外的部分就叫做盲区。因为盲区的存在,大大增加了交通事故发生的几率。而在车辆两侧加装侧视摄像头可以基本覆盖盲区,当有车辆进入盲区时,就有自动提醒驾驶员注意,这就是盲区监测系统。
目前还出现了新的潮流,那就是使用侧视广角摄像头取代后视镜,这样既能降低风阻,同时又可以获得更大更广的视角,避免在危险的盲区发生意外。
特斯拉摄像头布局
前向三颗摄像头(挡风玻璃后):前向窄视场角(1.5英寸到边),最大距离820英尺(约250米),35度视场角;前向主摄像头(1.5英寸到边),最大距离260英尺(80米),50度视场角;前向鱼眼摄像头(位于中间),最大距离195英尺(60米),150度视场角。
左B柱摄像头,195英尺(60米),80度视场角;右B柱,195英尺(60米),80度视场角;
左视镜下方翼子板位置后视摄像头,325英尺(100米),60度视场角;右视镜下方翼子板位置后视摄像头(100米),325英尺,60度视场
后视摄像头最大距离160英尺(约50米),140度视场角;
另外,在Model 3上还有一颗座舱内的监控摄像头。
02.雷达
雷达,测距测速必不可少的传感器。
雷达通过发射声波或者电磁波对目标物体进行照射并接收其回波,由此获得目标物体的距离、距离变化率(径向速度)、大小、方位等信息。雷达最先应用于军事中,后来逐渐民用化。
随着汽车智能化的发展趋势,雷达开始出现在汽车上,主要用于测距、测速等功能。汽车雷达可分为超声波雷达、毫米波雷达、激光雷达等,不同雷达的原理不尽相同,性能特点也各有优势,可用于实现不同的功能。
雷达传感器(仅进行原始数据收集)的基本架构
超声波雷达
超声波雷达是利用传感器内的超声波发生器产生40KHz的超声波,再由接收探头接收经障碍物反射回来的超声波,根据超声波反射接收的时间差计算与障碍物之间的距离。超声波雷达成本较低,探测距离近精度高,且不受光线条件的影响,因此常用于泊车系统中。
毫米波雷达:ADAS核心传感器
毫米波是指波长在1mm到10mm之间的电磁波,换算成频率后,毫米波的频率位于30GHz到300GHz之间。毫米波的波长介于厘米波和光波之间,因此毫米波兼有微波制导和光电制导的优点。
毫米波雷达在导弹制导、目标监视和截获、炮火控制和跟踪、高速通信、卫星遥感等领域都有广泛的应用。近些年,随着毫米波雷达技术水平的提升和成本的下降,毫米波雷达开始应用于汽车领域。
毫米波雷达关键技术主要由国外电子公司掌控。毫米波雷达系统主要包括天线、收发模块、信号处理模块,而MMIC芯片和天线PCB板(PrintedCircuitBoard)是毫米波雷达的硬件核心。
目前毫米波雷达关键技术主要被Bosch、Continental、Denso、Autoliv等零部件巨头垄断,特别是77GHz产品技术只有Bosch、Continental、Denso、Delphi等少数几家公司掌握。
激光雷达
激光雷达,功能强大成本大幅降低可期。
激光雷达是军转民的高精度雷达技术。激光雷达的应用一开始主要为军事领域,受到了各国军事部门的极大关注。相比普通雷达,激光雷达可提供高分辨率的辐射强度几何图像、距离图像、速度图像。在民用领域中,激光雷达因其在测距测速、三维建模等领域的优越性能也被广泛应用。
激光雷达性能精良,是无人驾驶的最佳技术路线。激光雷达相对于其他自动驾驶传感器具有非常优越的性能:
1)分辨率高。激光雷达可以获得极高的角度、距离和速度分辨率。通常激光雷达的角分辨率不低于0.1mard也就是说可以分辨3km距离上相距0.3m的两个目标,并可同时跟踪多个目标;距离分辨率可达0.1m;速度分辨率能达到10m/s以内。如此高的距离、速度分辨率意味着激光雷达可以利用多普勒成像技术获得非常清晰的图像。
2)精度高。激光直线传播、方向性好、光束非常窄,弥散性非常低,因此激光雷达的精度很高。
3)抗有源干扰能力强。与微波、毫米波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强。
激光雷达可以分为一维激光雷达、二维激光雷达、三维激光扫描仪、三维激光雷达等。其中一维激光雷达主要用于测距测速等,二维激光雷达主要用于轮廓测量、物体识别、区域监控等,三维激光雷达可以实现实时三维空间建模。
车载三维激光雷达一般安装在车顶,可以高速旋转,以获得周围空间的点云数据,从而实时绘制出车辆周边的三维空间地图;同时,激光雷达还可以测量出周边其他车辆在三个方向上的距离、速度、加速度、角速度等信息,再结合GPS地图计算出车辆的位置,这些庞大丰富的数据信息传输给ECU分析处理后,以供车辆快速做出判断。
编辑:jq
-
无人驾驶
+关注
关注
98文章
4079浏览量
120667 -
车载摄像头
+关注
关注
5文章
138浏览量
28100 -
雷达传感器
+关注
关注
3文章
286浏览量
34494
原文标题:一文了解最近很火的自动驾驶之“眼”
文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论