0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种交通场景下的行人检测方法

我快闭嘴 来源:电子产品世界 作者:何许梅 舒小华 2021-05-02 09:55 次阅读

作者:何许梅,舒小华,谷志茹,韩 逸,肖习雨

0 引言

行人检测是目标检测领域中重要的研究课题,其在智能驾驶系统、视频监控、人流量密度监测等领域有广泛应用。但由于行人背景的复杂以及个体本身的差异,行人检测成为目标检测领域的研究难点之一。

目前行人检测方法主要分为两类:传统的行人识别主要通过人工设计特征结合分类器的方式进行。比较经典的方法有HOG+SVM、HOG+LBP 等。此类方法可以避免行人遮挡带来的影响,但是泛化能力和准确性较低,难以满足实际需求。另一类是基于深度学习的方法。通过多层卷积神经网络(CNN) 对行人进行分类和定位。与传统特征算子相比,CNN 能根据输入的图像自主学习特征,提取图像中更丰富和更抽象的特征。目前已有许多基于深度学习的目标检测框架,如R-CNN(Region Convolutional Neural Network) 系列、YOLO(You Look at Once) 系列。R-CNN 系列算法又被称为二阶段算法,该类算法通过网络找出待检测目标可能存在的位置,即疑似区域,然后利用特征图内的特征信息对目标进行分类,优点是检测准确率较高,但实时性较差。YOLO 系列算法又称为一阶段算法,此类算法所有工作过程在一个网络内实现,采用端到端的方式,将目标检测问题转换为回归问题,使其网络的实时性得到了较好的提高,但准确率却不及Faster R-CNN(Faster Region Convolutional Neural Network,更快速的区域卷积神经网络)。

本论文借鉴目标检测的R-CNN 系列算法,在Faster R-CNN 网络的第一层卷积层前加入一个预处理层,其次使用K-means 算法聚类分析anchor 框中行人的宽高比,选出适合行人的宽高比作为anchor 的尺寸,提出交通场景下基于Faster R-CNN 的行人检测算法。所提方法在自制的交通场景下的数据集上进行测试,实验表明网络的检测效果有明显提升。

1 Faster R-CNN检测方法

Faster R-CNN 的检测框架如图1 所示。其检测流程主要分为4 部分:卷积网络、RPN(Region Proposal Network)、感兴趣区域池化(RoI Pooling) 以及目标检测分类。

一种交通场景下的行人检测方法

卷积网络由卷积层、池化层和输出层构成,各网络层之间权值共享,从训练的数据集中学习并自动提取目标特征。与传统手工设计特征相比,具有更好的泛化能力。

RPN 使用一个3×3 的块在最后一个卷积层输出的特征图上滑动来获得区域建议框即anchor 框,FasterR-CNN中的anchor 框有3 种比例尺寸,分别为0.5、1、2。

Faster R-CNN 的全连接层需要固定大小的输入,因此通过RoI 池化将不同大小的RoI 转成固定的大小。图2 为RoI 的池化过程。

一种交通场景下的行人检测方法

在检测分类阶段,分类函数计算得分,得到目标的所属类别,同时通过边界框回归计算出检测框的位置偏移量,得到更精确的位置。

2 改进的行人检测方法

Faster R-CNN 是针对通用目标的检测网络,识别的类别数为20,但在行人检测中只需要识别“行人”及“背景”这两个类别。由于图片中的行人在图片中所占的比例较小,因此设计一个预处理层,提取一层底层特征(本文提取纹理特征),再与原始图像一起输入到卷积网络中,能够减少训练所需的时间。

2.1 预处理层

选择传统行人检测方法中的纹理特征(LBP 特征) 作为预处理部分要提取的特征。LBP 特征描述了图片的局部纹理,它以每个像素值为中心取一个局部邻域区域,比较该区域内的每个像素的灰度值与中心像素的灰度值,得到一个二进制码,即该中心像素的LBP 值。但会导致二进制模式种类过多,所以等价模式(Uniform Pattern) 应运而生。等价LBP(ULBP) 在LBP 算子的基础上,统计二进制数中“01”或“10”跳变的次数,若跳变次数在2 次以内,则称为一个等价模式类,定义式为:

一种交通场景下的行人检测方法

式中, gp 表示邻域像素值, gc 表示中心像素值,U(LBP ) P,R 代表“01”或“10”的跳变次数。

从图3 中可以看出,图像中行人与背景的区别转换成了纹理上的差异。

(a)原图

(b)ULBP图

图3 原图与ULBP图

2.2 anchor框聚类分析

使用k-means 聚类对训练集中所有行人目标的真实框进行聚类分析。anchor 框聚类分析算法的主要流程:

Step1:将训练集中所有目标框的宽高构成数据集D,再从D 中随机选择一个聚类中心ci false;

Step2:求D 中每个样本s 到ci 的距离,记为di ,将使di 最小的那个样本归到ci 中;

Step4:循环执行Step2 和Step3,直到聚类中心不变。

取出所有行人标注框的坐标信息,计算出每一个标注框的宽和高,并对其进行聚类统计,这里取聚类数k = 3 。随后,计算宽与高的比值,使用统计直方图的方法求出其均值,得到宽高比的均值μ = 0.39 ,也就是说训练集中目标的anchor 框的合适的宽高比是0.39,即w ≈ 0.39h。图 4 为行人 anchor 框的宽高统计结果。

因此,本文将原Faster R-CNN 算法中anchor 框的宽高比修改为(0.39:1)。

一种交通场景下的行人检测方法

a)宽高统计图

一种交通场景下的行人检测方法

(b)宽高比统计图

图4 宽高聚类分析

3 实验结果与分析

3.1 实验数据集

实验数据集来源有:车载摄像头拍摄的图片、手机拍摄的图片,选取光照条件比较好的图片作为数据集,采用LabelImg 图像标注工具对采集到的图片进行标注,标注的区域包含行人的轮廓,得到带标签的行人数据集,共计1 304 张。标签名统一采用person 表示。在模型的训练阶段,选取数据集的80% 来训练模型,20% 作为测试集。部分实验数据集如图5 所示。

图5 数据集样本

3.2 实验平台及训练

实验所使用的软硬件环境如表1 所示。

表1 软硬件配置

一种交通场景下的行人检测方法

训练参数如表2 所示。

表2 训练参数设置

一种交通场景下的行人检测方法

3.3 实验结果分析

实验采用平均准确度(mAP)作为判断算法性能的标准。在自制的数据集上进行实验,检测精度达到了90.1%。所提方法检测结果与直接使用Faster R-CNN的检测效果对比如图6 所示,图6(a) 表示直接使用Faster R-CNN 的检测效果,图6(b) 表示所提算法的检测效果,通过左右图片对比可以看出,使用所提算法检测出来的目标个数要优于调整前的检测个数。

(a) Faster R-CNN检测结果

(b)本文方法结果

图6 测试结果对比

为了比较调整宽高比对模型准确率的影响,在自制数据集上对原算法和所提算法分别训练40 000 次。得到的检测准确率如表3 所示,所提算法的准确率较原算法提高了1.8%。

表3 调整宽高比前后测试结果

一种交通场景下的行人检测方法

4 结语

以Faster R-CNN 为基础,通过在卷积层之前加入一个预处理层成功实现行人检测的目标。以自制数据集为训练和测试网络所需的数据,针对漏检和误检,提出将纹理特征作为底层特征对原图进行预处理,同时使用K-means 算法对行人宽高比进行统计分析,得出适合数据集中行人的宽高比尺寸,达到降低漏检的目的。实验测试结果表明,本文算法可以有效提高交通场景下行人检测的准确率,在漏检率和误检率上,分别提高了5%、6.1%。但存在训练样本还不够丰富,因此下一步研究工作的重点将放在提高检测模型的实时性和鲁棒性上。
责任编辑:tzh

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 视频监控
    +关注

    关注

    17

    文章

    1710

    浏览量

    64945
  • 网络
    +关注

    关注

    14

    文章

    7553

    浏览量

    88726
  • 检测
    +关注

    关注

    5

    文章

    4480

    浏览量

    91440
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121109
收藏 人收藏

    评论

    相关推荐

    基于稀疏编码的迁移学习及其在行人检测中的应用

    定进展,但大都需要大量的训练数据.针对这问题,提出了一种基于迁移学习的半监督行人分类方法:首先基于稀疏编码,从任意的未标记样本中,学习到
    发表于 04-24 09:48

    如何设计一种基于DSP的车辆碰撞声检测装置?

    本文采用小波分析和模式识别方法分析车辆噪声信号,设计了一种基于DSP的车辆碰撞声检测装置,该装置能有效检测车辆碰撞事件,实现交通事故的自动识
    发表于 05-12 06:32

    一种基于图像平移的目标检测框架

    1、摘要近年来,在深度卷积神经网络(CNNs)的帮助,图像和视频监控在智能交通系统(ITS)中取得了长足的进展。作为一种先进的感知方法,智能交通
    发表于 08-31 07:43

    MATLAB的行人目标检测方法有哪些?

    MATLAB的行人目标检测方法有哪些,就是主要的方法,基于背景的,基于目标的,还有其他的。都有哪些?
    发表于 08-23 16:30

    基于车载视觉的行人检测与跟踪方法

    为提高城市交通环境下车辆主动安全性,保障行人安全,提出了基于车载视觉传感器的行人保护方法。利用Adaboost 算法实现行人的快速
    发表于 03-29 17:46 3234次阅读
    基于车载视觉的<b class='flag-5'>行人</b><b class='flag-5'>检测</b>与跟踪<b class='flag-5'>方法</b>

    一种多点脉搏信号检测方法

    一种多点脉搏信号检测方法:
    发表于 03-30 15:41 22次下载
    <b class='flag-5'>一种</b>多点脉搏信号<b class='flag-5'>检测</b><b class='flag-5'>方法</b>

    一种基于交通视频的摄像机标定方法

    本文介绍了一种线性模型的摄像机标定方法。在获取交通视频的基础上,利用实际路面上的参照物和图像处理的基本知识抽象出交通视频中的像素行和路面实
    发表于 05-29 16:58 83次下载
    <b class='flag-5'>一种</b>基于<b class='flag-5'>交通</b>视频的摄像机标定<b class='flag-5'>方法</b>

    一种简单背景的快速边缘检测方法_周恩明

    一种简单背景的快速边缘检测方法_周恩明
    发表于 03-19 11:46 0次下载

    加密场景一种测试方法

    加密场景一种测试方法
    发表于 09-07 11:07 3次下载
    加密<b class='flag-5'>场景</b><b class='flag-5'>下</b>的<b class='flag-5'>一种</b>测试<b class='flag-5'>方法</b>

    基于改进型LBP特征的监控视频行人检测

    。由于光线,颜色,尺度和姿势等各方面的差别,行人检测个具有挑战性的问题。有效特征的提取是这个问题的关键。本文提出了一种基于改进型的局部三值模式( LTP)特征的
    发表于 11-15 10:51 11次下载
    基于改进型LBP特征的监控视频<b class='flag-5'>行人</b><b class='flag-5'>检测</b>

    一种改进的基于卷积神经网络的行人检测方法

    为了在行人检测任务中使卷积神经网络(CNN)选择出更优模型并获得定位更准确的检测框,提出一种改进的基于卷积神经网络的行人
    发表于 12-01 15:23 0次下载
    <b class='flag-5'>一种</b>改进的基于卷积神经网络的<b class='flag-5'>行人</b><b class='flag-5'>检测</b><b class='flag-5'>方法</b>

    基于YUV颜色空间的行人视频检测阴影去除算法的实现

    行人检测与传统的红外检测、GPS检测、激光检测方法相比,具有不破坏路面、维护方便、实时性好、
    的头像 发表于 07-29 08:06 2404次阅读
    基于YUV颜色空间的<b class='flag-5'>行人</b>视频<b class='flag-5'>检测</b>阴影去除算法的实现

    如何使用级联网络进行行人检测方法说明

    针对复杂环境下行人检测不能同时满足高召回率与高效率检测的问题,提出一种基于卷积神经网络(CNN)的行人
    发表于 04-12 17:30 6次下载
    如何使用级联网络进行<b class='flag-5'>行人</b><b class='flag-5'>检测</b>的<b class='flag-5'>方法</b>说明

    一种新型的交通视频背景建模方法

    针对城市道路交通视频难以直接提取交通背景,导致前景目标检测不准确的问题,提岀了一种基于帧间差分和统计直方图的交通视频背景建模
    发表于 05-08 17:04 5次下载

    一种基于HOG+SVM的行人检测算法

    在先进驾驶辅助系统中, 基于视觉的行人检测只能对摄像头视野范围内的无遮挡行人进行检测, 并且易受天气的影响, 在极端天气无法工作。
    的头像 发表于 02-22 10:17 2878次阅读