0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一文详细剖析深度相机之双目成像

新机器视觉 来源:CV研习社 作者:CV研习社 2021-04-26 13:36 次阅读

文章导读

本文通过介绍双目立体视觉的成像过程,带大家了解双目视觉如何从两个不同视角的成像平面中恢复出物体三维几何信息,重建周围景物的三维形状与位置。 在说双目视觉之前,我们先聊一下单目成像过程,最简单的单目成像是基于小孔成像的原理,三维空间中的点经过透视投影过程映射到图像平面上,如此一来在透视线上的空间点都落在像平面上的同一点处。

所以普遍认为单目相机缺乏深度信息无法测距。(这里仅从成像原理出发,当然现实中借助外界约束有很多单目测距的方法) 而双目相机利用视差原理从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差来恢复出物体三维几何信息。 双目的核心在于建立两个图像中特征之间的对应关系,将三维空间中同一目标点在不同视图的成像点关联起来,然后计算它们之间的差别,最后通过视差和距离的几何关系得到深度图。双目立体视觉的具体步骤如下:

对双目相机进行标定得到内外参数和单应性矩阵

通过内参做畸变校正并用单应矩阵将两张图片转换到同一平面

对校正后的两张图片根据极线约束进行像素配准

根据配准结构计算每个像素的深度从而获得深度图

输入左右两个视角的自行车图像:

输出自行车的深度图信息:

到底什么是视差、极点、极线、极平面、极线约束等等?在谈到双目成像时,首先出现的一个概念就是视差,网上有人用过一个很简单的形式来描述视差,即将人眼想象成双目相机,竖起一根手指放在前方作为目标,分别闭上左眼或右眼去观察目标,我们发现目标在不同成像平面中的位置移动了,这个像素位置的差异值就是视差。

cbaac29a-a648-11eb-aece-12bb97331649.png

在上面这张图中,左右两幅图分别表示左右相机的成像平面,假设一个目标在左视图的成像点落在第二列蓝色区域,在右视图的成像点落在第五列蓝色区域,视差值即为3。这里小伙伴会问为什么在计算视差值的时候,目标在左右视图中的匹配点所在行相同呢?其实在计算视差图之前,存在一个重要的操作即图像校正:包括畸变校正和立体校正两个过程。

图像的畸变校正我们都很熟悉了,有兴趣的童鞋可以翻翻小编之前的文章,有一篇线性相机模型中进行了描述。通过张正友标定法计算出相机的4个内参fx,fy,cx,cy和5个畸变系数k1,k2,k3,p1,p2,进一步解决相机的枕形畸变和桶形畸变。 立体校正的过程是利用两颗相机之间的外参即旋转平移矩阵以及透视投影矩阵,对两幅图像进行极线校正,将图象平面重投影到平行于光心线的公共平面上,如下图所示,将原始的灰色像平面纠正到黄色位置。

cc08beb8-a648-11eb-aece-12bb97331649.png

接下来我们从下图解释一下极点、极线、极平面的概念,假设空间一点P投影到左视图像平面上,成像点PL;投影到右视图像平面上,成像点PR。两个相机光心的连线CL-CR与像平面的交点eL和eR称为极点。物点P与左右相机光心CL、CR组成的平面称为极平面。而极平面与相机的像平面交线称为极线。

cc45da96-a648-11eb-aece-12bb97331649.png

上图中还有一个规律,我们发现不同距离处的三维空间点P,P1,P2,P3投影到左视图成像点PL上,在右视图搜索相对应的匹配点时,它们均落在红色直线上(极线)。所以当我们做左右视图的匹配时,是否可以利用这一规律呢?在图像匹配的过程中,如何找到两幅图像的对应关系?最直接的做法就是逐点匹配,但是从一副图像中逐个像素点的搜索,不仅耗时巨大而且匹配精度不高。

为了降低匹配的难度,提供匹配的速度和精度,通常会增加一些约束条件,比如极线约束、相似性约束、左右一致性约束等。其中极线约束最为常见,它是指三维空间中一点P,当投影到左视图P’位置后,必然能在右视图的极线上匹配到该点。该约束将二维空间中的逐点搜索降维到一维直线上的搜索,减少了算法耗时并提高匹配精度。我们先来看一种理想的情况,左右相机内参相同且像平面共面,如下图所示:

cc549c66-a648-11eb-aece-12bb97331649.png

在这种情况下,做图像特征匹配时,只需要将左视图中的像素点,沿着水平方向在右视图的极线上搜索对应点即可。但是实际情况下左右相机内参不同且像平面不共面,如下图所示:

cd3e7822-a648-11eb-aece-12bb97331649.png

上文中提到的立体校正就是应用在此处,为了使同一特征点位于左右相机两张图像水平方向的同一条直线上。也就是把实际情况下非共面行对齐的两幅图像校正成共面行对齐。那么极线和视差是否存在某种关系呢?假设左右两个相机的焦距相同,极线和光轴均平行。

左右视角同时看到两个目标P1和P2,其中XR1和XT1分别是P1点落在左右两幅图中的位置,即P1在左右相机的视差为|XR1-XT1|;XR2和XT2分别是P2点落在左右两幅图中的位置,即P2在左右相机的视差为|XR2-XT2|。所以移动三维空间中的一点P,其在左右相机中的位置也会发生变化,从而视差发生变化。如下图所示:

cd7ae2ee-a648-11eb-aece-12bb97331649.png

根据三角形相似性原理可以得到Z=b * f / d,Z表示目标的距离,b是基线,f是焦距,d是视差,可以看出视差与三维空间上的点到投影中心平面的距离成反比:距离像平面越近的目标,视差越大;距离像平面越远的目标,视差越小。

cda70676-a648-11eb-aece-12bb97331649.png

双目视觉的本质就是两幅图像特征匹配的过程,虽然技术成熟度很高,但是在哪些情况下仍然存在挑战呢?

物体边缘处的估计

纹理信息单调的场景

缺乏纹理的物体

光照角度强度不同

雨雪天气场景下

夜晚或昏暗场景

cdbee30e-a648-11eb-aece-12bb97331649.jpg

在室内场景会遇到白墙,房顶,玻璃等纹理信息单一或缺乏的情况导致图像匹配失败;在室外场景会遇到进出隧道的光照变化,昏暗街道的匹配失败等问题。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相机
    +关注

    关注

    4

    文章

    1343

    浏览量

    53493
  • 矩阵
    +关注

    关注

    0

    文章

    422

    浏览量

    34494
  • 立体视觉
    +关注

    关注

    0

    文章

    36

    浏览量

    9770

原文标题:一文详解深度相机之双目成像

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    成本400元,DIY个高刷新率热成像相机

    在市面上开源的热成像作品中,有部分颜值高,但分辨率太低;也有部分把分辨率提高了,但使用起来却不太流畅。 基于此,作者本人结合二者的优势,设计了款热
    发表于 11-13 09:28

    成本400元,DIY个高刷新率热成像相机

    在市面上开源的热成像作品中,有部分颜值高,但 分辨率太低; 也有部分把分辨率提高了,但使用起来 却不太流畅 。 基于此,作者本人结合二者的优势,设计了款 热
    发表于 10-15 14:12

    英特尔推出全新实感深度相机模组D421

    英特尔 实感 技术再次突破界限,推出全新的英特尔 实感 深度相机模组D421。这是款入门级立体深度模组,旨在以高性价比将先进的深度感应技术
    的头像 发表于 10-11 15:26 351次阅读

    立体视觉新手必看:英特尔® 实感™ D421深度相机模组

    英特尔首款体化立体深度模组,旨在将先进的深度感应技术带给更广泛的受众 2024年9月24日 —— 英特尔® 实感™ 技术再次突破界限,推出全新的英特尔® 实感™ 深度
    的头像 发表于 09-26 13:33 217次阅读
    立体视觉新手必看:英特尔® 实感™ D421<b class='flag-5'>深度</b><b class='flag-5'>相机</b>模组

    探索巅峰性能 | 迅为RK3588开发板深度剖析

    探索巅峰性能 | 迅为RK3588开发板深度剖析
    的头像 发表于 08-12 14:07 753次阅读
    探索巅峰性能 | 迅为RK3588开发板<b class='flag-5'>深度</b><b class='flag-5'>剖析</b>

    Koolance 散热器在科学相机中的应用 (

    、什么是科学相机?  它和普通的相机有什么不同? 科学相机,顾名思义,就是运用于科学领域的专用相机。目前,主要应用在:生命科学、天文学、化
    的头像 发表于 05-22 15:14 288次阅读
    Koolance 散热器在科学<b class='flag-5'>相机</b>中的应用 (<b class='flag-5'>一</b>)

    重磅| 奥比中光全新双目系列3D相机,搭载自研芯片,为智能机器人而生

    设计的新深度引擎芯片MX6800,配备高性能主被动融合双目成像系统,能够在户外、室内、夜晚、白昼等不同光照条件以及复杂多变的动态环境中稳定输出高质量深度数据,精准还原场景和物体的3
    发表于 04-30 18:00 417次阅读
    重磅| 奥比中光全新<b class='flag-5'>双目</b>系列3D<b class='flag-5'>相机</b>,搭载自研芯片,为智能机器人而生

    奥比中光正式发布全新Gemini 330系列双目3D相机

    4月29日,奥比中光正式发布全新Gemini 330系列双目3D相机,首发产品包括Gemini 335、Gemini 335L两款通用型高性能双目3D相机
    的头像 发表于 04-30 10:41 582次阅读
    奥比中光正式发布全新Gemini 330系列<b class='flag-5'>双目</b>3D<b class='flag-5'>相机</b>

    get面阵工业相机

    快速了解面阵工业相机
    的头像 发表于 04-17 16:09 574次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b>get面阵工业<b class='flag-5'>相机</b>

    工业相机单目和双目的区别

    工业相机标定的方法根据工业相机的数目可分为单目标定、双目标定Q以及多目标定。
    的头像 发表于 03-26 16:26 1779次阅读
    工业<b class='flag-5'>相机</b>单目和<b class='flag-5'>双目</b>的区别

    深度剖析汽车内部结构和原理

    很多人都想了解更多的汽车知识,以加深对汽车的了解,只是无奈汽车结构之复杂,机械知识乏味,都一一放弃了。下面给大家准备了组图解汽车文章,结合图片剖析汽车内部结构,让复杂的原理变得通俗易懂。
    的头像 发表于 12-28 10:31 1080次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>剖析</b>汽车内部结构和原理

    友思特分享 | OCT成像技术:突破传统限制,掌握内部缺陷图像,轻松实现深度检测

    OCT成像技术克服了传统视觉相机技术无法获得内部缺陷图像与深度检测的问题,是断层截面成像利器。友思特OQ LabScope系列便携式小巧紧凑的OCT
    的头像 发表于 12-20 14:49 1105次阅读
    友思特分享 | OCT<b class='flag-5'>成像</b>技术:突破传统限制,掌握内部缺陷图像,轻松实现<b class='flag-5'>深度</b>检测

    深度解析3D视觉成像几种典型方案

    类似于ToF相机、光场相机这类相机,可以归类为单相机3D成像范围,它们体积小,实时性好,适合Eye-in-Hand系统执行3D测量、定位和实
    发表于 12-05 12:24 917次阅读
    <b class='flag-5'>深度</b>解析3D视觉<b class='flag-5'>成像</b>几种典型方案

    滨松单相机双色同步成像解决方案

    对于滤光片的挑选使用。      使用灵活W-View读出模式   采用W-View GEMINI这样的双色分光附件将两种颜色的信号成像相机
    的头像 发表于 11-30 14:11 317次阅读
    滨松单<b class='flag-5'>相机</b>双色同步<b class='flag-5'>成像</b>解决方案

    深度剖析 IGBT 栅极驱动注意事项

    深度剖析 IGBT 栅极驱动注意事项
    的头像 发表于 11-24 14:48 671次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>剖析</b> IGBT 栅极驱动注意事项