0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

在图像恢复中使用多个感受野会是什么效果?

电子工程师 来源:Chu-Tak Li 作者:Chu-Tak Li 2021-04-28 14:41 次阅读

作者:Chu-Tak Li

编译:ronghuaiyang

网络结构中使用多种感受野,并对损失函数进行了改进。

今天我们要讲的另一种修复论文叫做Image inpainting via Generative Multi-column CNNs (GMCNN)。本文使用的网络架构类似于我们之前介绍的那些论文。本文的主要贡献是对损失函数进行了若干修正。

回顾

正如我在以前的文章中提到的,如何利用图像中其他像素所提供的信息,对提高图像修复效果至关重要。图像修复的一个非常直观的意义是直接复制图像本身中找到的最相似的图像patch,并粘贴在缺失的区域。有趣的是,我们应该意识到,在实践中,对于缺失的区域没有“正确”的答案。在现实中,给定一个损坏的/mask的图像,你不可能知道原始图像(ground truth)来进行比较。所以,我们有这么多的答案来解决缺失的区域。

介绍和动机

从以往的图像修复论文中,我们了解到感受野野对图像修复的重要性。对于3×3内核,我们可以调整膨胀率来控制它的感受野。如果扩张率为1,我们的感受野为3×3。如果膨胀率是2,通过跳过一个相邻像素,我们有一个5×5感受野,以此类推。这里,如果我们使用带有膨胀卷积的3×3、5×5和7×7内核会怎么样?这在本文中被定义为一个多列结构

在之前的文章中,寻找和缺失区域最相似的图像patch的过程是嵌入到生成网络中的,在这个工作中,该过程只是用来设计一个新的损失项用于训练。

由于缺少的区域没有“正确”的答案,像素级重建精度损失项(即L1损失)似乎不适用于图像修复。作者提出了基于缺失像素的空间位置,对L1损失项进行加权。靠近有效像素的空间位置对于L1的损失应该有更高的权值,因为它们对重构有更合理的参考,反之亦然。

方案和贡献

100063771-127840-1.png

图1,给出了用该方法进行修复的一些结果

在我看来,本文遵循了我们之前提到的图像修复的趋势。首先,作者采用了扩展卷积的多分支CNN,而不是单一分支。三个不同的kernel大小被用于三个不同的分支,以实现不同的感受野和提取不同分辨率的特征。

其次,引入两个新的损失项来训练网络,分别是置信度驱动的重建损失和隐多样化马尔可夫随机场(ID-MRF)损失。置信度驱动的重建损失是一个加权的L1损失,而ID-MRF损失与预训练的VGG网络计算的特征patch比较有关。

图1显示了本文方法的一些修复结果。你可以放大以更好地查看这些高质量的结果。

方法

100063771-127841-2.png

图2,提出的网络架构

图2显示了本文提出的生成式多列卷积神经网络(GMCNN)的网络结构。如你所见,有一个多列生成器网络、两个鉴别器(全局和局部)和一个用于计算ID-MRF损失的预训练VGG19。

生成网络中有三列,每一列使用三种不同大小的过滤器,即3×3、5×5和7×7。、注意,这三列的输出被连接到其他两个卷积层以获得完整的图像。

ID-MRF正则化

100063771-127842-3.png

图3,使用不同的相似性度量来搜索修复结果的最近邻居。(a)余弦相似度的修复结果(b)提出的相对相似度的修复结果(c) Ground truth图像(红色矩形突出填充区域)

简单地说,对于MRF目标,我们希望最小化生成的特征与通过预先训练的网络计算出的ground truth中的最近邻居特征之间的差异。在大多数以前的工作,余弦相似性测量被用来寻找最近的邻居。然而,这种相似性度量通常对不同生成的特征块给出相同的最近邻,导致修复结果模糊,如图3(a)所示。

为了避免使用余弦相似度度量可能导致完成图像模糊,我们采用了相对距离度量,修复结果如图3(b)所示。你可以看到,完成的图像有更好的局部精细纹理。

我们来谈谈它们是如何进行相对距离测量的。Y(hat)_g为缺失区域生成的内容,Y(hat)^L_g 和 Y^L 为预训练网络的第L层特征。对分别从Y(hat)^L_g 和 Y^L中提取的v和s特征块,计算v与s的相对相似度:

100063771-127843-4.png

mu(. , .)是余弦相似度。r属于Y^L, v除外。h和 epsilon是正的常数。显然,如果v比其他特性patch更类似于s,那么RS(v, s)就会很大。你也可以考虑,如果v有两个类似的patchs和r,那么RS(v, s)就会很小。我们鼓励在缺失区域之外寻找类似的patches。

100063771-127844-5.png

最后,计算了在Y(hat)^L_g 和 Y^L 之间的ID-MRF损耗。

100063771-127845-6.png

其中参数max RS(bar)(v, s)表示s是v最近的邻居,Z是一个归一化因子。如果考虑所有生成的特征patch都接近于某一特征patch s的极端情况,则max RS(bar) (v, r)较小,因此ID-MRF损失较大。

另一方面,如果Y^L 中的每个r都有自己的最近邻居Y(hat)^L_g,则max RS(bar) (v, r)很大,因而ID-MRF损失较小。这里,主要思想是强制/引导生成的特征patch有不同的最近邻居,从而生成的feature具有更好的局部纹理。

与先前的工作一样,作者使用预先训练的VGG19来计算ID-MRF损失。请注意,中间层conv3_2和conv4_2分别表示结构特征和语义特征。

100063771-127847-7.png

作者声称这种损失与最近邻搜索有关,并且只在训练阶段使用。这与在测试阶段搜索最近邻居的方法不同。

特征不变重建损失

所提出的空间变异重构损失实际上是一个加权的L1损失。确定权值的方法有很多种,本文利用高斯滤波器对掩模进行卷积,生成加权掩模,计算加权L1损耗。加权L1损失的主要思想是,接近有效像素的像素损失比远离有效像素的像素损失受到更高的约束。因此,位于缺失区域中心的像素损失应该有更低的L1损失权值(即更少的约束)。

对抗损失

与先前的工作类似,作者采用了改进的WGAN损失和局部和全局鉴别器。

最终的损失函数

100063771-127848-8.png

这是用于训练所提模型的最终的损失函数。与大多数修复论文相似,加权L1损失(第一损失项)的重要性为1。Lambda_mrf和Lambda_adv是控制局部纹理mrf正则化和对抗训练重要性的参数。

实验

作者在5个公共数据集上评估了他们的方法,即Paris StreetView, Places2, ImageNet, CelebA和CelebA- hq数据集。在他们的训练期间,所有的图像都被调整为256×256,最大的中心孔的大小128×128。在GPU上测试256×256和512×512大小的图像,每个图像大约需要49.37 ms和146.11 ms。

100063771-127850-9.png

图4,定性比较巴黎街景(上)和ImageNet(下)。(a)输入图像(b)上下文编码器(c) MSNPS (d)上下文注意(e)提出的方法。

图4显示了Paris StreetView和ImageNet数据集的定性比较。请放大以更清楚地看到修复结果。很明显,本文提出的方法GMCNN给出了具有最佳视觉质量的修复结果。

100063771-127852-10.png

表1,五个数据集的定量结果

正如我在之前的文章和本文开头提到的,PSNR与像素级重建精度有关,这可能不适用于评估图像修复。研究人员仍然报告PSNR和SSIM供读者参考,因为这些数值指标是所有图像处理任务的基础。如表1所示,本文提出的方法在五个数据集上获得了相当甚至更好的PSNR和SSIM。

消融研究

100063771-127854-11.png

表2,巴黎街景数据集上不同网络结构的定量结果

100063771-127856-12.png

图5,对巴黎街景数据集上不同网络结构的定性比较。(a)输入图像(b)单个编码器-解码器(c)粗到细(d) 3个分支中感受野固定的GMCNN (e)感受野不同的GMCNN

对不同网络结构在图像修复中的性能进行了评价。在他们的实验中,对于从粗到细的结构,没有使用上下文注意力。对于三个分支中感受野固定的GMCNN,采用大小为5×5的过滤器。对于具有不同感受野的GMCNN,三个分支分别使用了3×3、5×5和7×7的kernel。定量和定性结果分别见表2和图5。显然,具有不同感受野的GMCNN提供了最好的修复效果。

除了网络结构的选择和多重感受野的使用,作者还研究了两个提出的损失项的有效性,即信心驱动重建损失和ID-MRF损失。

100063771-127859-13.png

图6,对Paris StreetView数据集上不同重建损失的定性比较。(a)输入图像(b)空间折现损失(c)提出的置信驱动重建损失

图6显示了不同重建损失的视觉对比,即空间折现损失和提出的置信度驱动重建损失。请注意,空间折现损失根据像素的空间位置获得权重掩码,而提出的置信驱动重建损失通过将掩码图像与高斯滤波器进行多次卷积获得权重掩码。两位作者声称,由置信度驱动的重建损失效果更好。从我自己的经验来看,这两种重建损失是相似的。也许你可以试一试。

100063771-127939-14.png

表3,在Paris StreetView数据集上使用不同的lambda_mrf的定量结果

100063771-127940-15.png

图7,在Paris StreetView数据集上使用ID-MRF损失与否的定性比较 (a) 输入图像(b)使用ID-MRF损失的修复结果(c)没有使用ID-MRF损失的修复结果

100063771-127941-16.png

图8,在Paris StreetView数据集上使用ID-MRF loss与不同的lambda_mrf进行定性比较。(a) Input image (b) lambda_mrf = 2 (c) lambda_mrf = 0.2 (d) lambda_mrf = 0.02 (e) lambda_mrf = 0.002

更重要的是,ID-MRF损失项是本文最强调的。因此,作者表明了这一失项的重要性,定量结果列在表3中。图7显示了使用ID-MRF损失和不使用ID-MRF损失训练的模型之间的区别。我们可以看到,使用ID-MRF可以增强生成像素的局部细节。此外,图8显示了使用不同的lambda_mrf来控制ID-MRF损失的重要性的效果。你可以放大以便更好地查看结果。我个人认为,修复的结果是相似的。从表3可以看出,lambda_mrf = 0.02提供了PSNR和视觉质量之间的良好平衡。

总结

综上所述,本文的创新之处在于使用ID-MRF损失项来进一步增强生成内容的局部细节。这种损失的主要思想是引导生成的特征patch在缺失区域之外寻找最近的邻居作为参考,并且最近的邻居应该是多样化的,这样可以模拟更多的局部细节。

多重感受野(多列或多分支)的使用是由于感受野的大小对图像修复任务很重要。由于局部相邻像素缺失,我们必须借用遥远空间位置的信息来填补缺失的像素。如果你看过我之前的文章,我想这个想法对你来说并不难理解。

使用加权L1损失也是由于缺少区域没有“正确”答案的事实。对于那些更接近缺失区域边界的缺失像素,它们相对受到接近有效像素的约束,因此需要对L1的损失赋予更高的权值。另一方面,对于位于缺失区域中心的缺失像素,它们的L1约束应该更小。

要点

参考我在上面的结论,我希望你能理解提出的ID-MRF损失的意义,因为这是本文的核心思想。对于本文的其他两个思路,即多列结构和加权L1损失。事实上,如果你关注过我之前的文章,我认为你可以很好地理解背后的原因。我认为多重/多种感受野的概念是深层语义修复的常见做法。

对于加权的L1损失,从我个人的经验来看,我不认为它会对修复性能带来明显的改善。当然,实现加权L1损失的方法有很多。如果你对此感兴趣,可以试一试。

英文原文:https://towardsdatascience.com/what-if-multiple-receptive-fields-are-used-for-image-inpainting-ea44003ea7e9

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 图像
    +关注

    关注

    2

    文章

    1085

    浏览量

    40489
  • 网络
    +关注

    关注

    14

    文章

    7571

    浏览量

    88875
  • 卷积
    +关注

    关注

    0

    文章

    95

    浏览量

    18521
  • cnn
    cnn
    +关注

    关注

    3

    文章

    352

    浏览量

    22237
收藏 人收藏

    评论

    相关推荐

    Mamba入局图像复原,达成新SOTA

    和Transformer的方法更受欢迎。得益于Mamba全局感受、线性计算复杂度、高效远程依赖处理等诸多优势,它在图像复原(比如超分辨率、去噪等)任务
    的头像 发表于 12-30 18:09 101次阅读
    Mamba入局<b class='flag-5'>图像</b>复原,达成新SOTA

    【每天学点AI】实战图像增强技术人工智能图像处理中的应用

    图像增强(ImageEnhancement)是人工智能和计算机视觉中一项重要的技术,也是人工智能数据集预处理的一个重要步骤。它旨在提高图像的质量,使其视觉上更加清晰、细节更丰富。这项技术
    的头像 发表于 11-22 17:14 634次阅读
    【每天学点AI】实战<b class='flag-5'>图像</b>增强技术<b class='flag-5'>在</b>人工智能<b class='flag-5'>图像</b>处理中的应用

    岛宣布收购日本电脑厂商VAIO

    近日,日本家电连锁巨头岛宣布了一项重大收购计划,将以112亿日元的价格从日本产业合作伙伴(JIP)手中收购电脑厂商VAIO超过90%的股权。这一收购行动标志着电子产品领域的进一步扩张。 根据
    的头像 发表于 11-14 14:21 293次阅读

    岛将收购日本电脑厂商VAIO

    日本家电连锁巨头岛(Nojima)于11月11日正式宣布,将收购日本知名电脑厂商VAIO。此次收购中,岛将从企业再生基金日本产业合作伙伴(JIP)手中获得VAIO超过90%的股权,收购金额高达112亿日元。
    的头像 发表于 11-13 15:17 347次阅读

    FPGA图像处理领域的优势有哪些?

    处理复杂、多变的图像场景时具有更高的灵活性和适应性。 三、短开发周期 与传统的ASIC(专用集成电路)相比,FPGA的开发周期更短。ASIC需要经过设计、验证、生产等多个环节,而FPGA可以短时间
    发表于 10-09 14:36

    反向电流应用中使用比较器

    电子发烧友网站提供《反向电流应用中使用比较器.pdf》资料免费下载
    发表于 09-19 12:50 0次下载
    <b class='flag-5'>在</b>反向电流应用<b class='flag-5'>中使</b>用比较器

    设计中使用MOSFET安全工作区曲线

    电子发烧友网站提供《设计中使用MOSFET安全工作区曲线.pdf》资料免费下载
    发表于 09-07 10:55 1次下载
    <b class='flag-5'>在</b>设计<b class='flag-5'>中使</b>用MOSFET安全工作区曲线

    设计中使用MOSFET瞬态热阻抗曲线

    电子发烧友网站提供《设计中使用MOSFET瞬态热阻抗曲线.pdf》资料免费下载
    发表于 08-28 09:21 17次下载
    <b class='flag-5'>在</b>设计<b class='flag-5'>中使</b>用MOSFET瞬态热阻抗曲线

    计算机视觉中的图像融合

    许多计算机视觉应用中(例如机器人运动和医学成像),需要将多个图像的相关信息整合到单一图像中。这种图像融合可以提供更高的可靠性、准确性和数据
    的头像 发表于 08-01 08:28 694次阅读
    计算机视觉中的<b class='flag-5'>图像</b>融合

    图像处理中的卷积运算

    卷积运算是图像处理中一种极其重要的操作,广泛应用于图像滤波、边缘检测、特征提取等多个方面。它基于一个核(或称为卷积核、滤波器)与图像进行相乘并求和的过程,通过这一操作可以实现对
    的头像 发表于 07-11 15:15 2406次阅读

    linux中使用esptool.py下载图像,下载成功但无法启动是怎么回事?

    我有一个参考 ESP-WROOM-02 设计的 EVB,CH340 作为 usb2 串行接口。我尝试 linux 中使用 esptool.py 下载图像,下载成功但无法启动。我Wi
    发表于 07-08 06:21

    鸿蒙ArkTS声明式开发:跨平台支持列表【图像效果】 通用属性

    设置组件的模糊、阴影、球面效果以及设置图片的图像效果
    的头像 发表于 06-04 16:34 673次阅读
    鸿蒙ArkTS声明式开发:跨平台支持列表【<b class='flag-5'>图像</b><b class='flag-5'>效果</b>】 通用属性

    鸿蒙开发图形图像——@ohos.effectKit (图像效果)

    图像效果提供处理图像的一些基础能力,包括对当前图像的亮度调节、模糊化、灰度调节、智能取色等。 该模块提供以下图像
    的头像 发表于 02-22 16:08 420次阅读
    鸿蒙开发图形<b class='flag-5'>图像</b>——@ohos.effectKit (<b class='flag-5'>图像</b><b class='flag-5'>效果</b>)

    TC264的TriBoard中使用ABM启动方式BMHD中将HWCFG[6]拉低了结果程序无法下载了,请问如何恢复

    TC264的TriBoard中使用ABM启动方式BMHD中将HWCFG[6]拉低了结果程序无法下载了,请问如何恢复?需要将HWCFG[2:0] = 1 1 1吗?TriBoard电源指示灯显示正常。
    发表于 02-20 06:36

    DAVE丢失的文件可以恢复吗?

    多个项目中使用 DAVE,并遇到了如下所述的问题。 我重命名了一个现有项目,然后通过导入该项目切换到另一个项目。 这两个项目同名,这就是我重命名前一个项目以导入新项目的原因。 但是,当我尝试切换
    发表于 01-26 08:07