卷积神经网络图像识别
在机器视觉的概念中,图像识别是指软件具有分辨图片中的人物、位置、物体、动作以及笔迹的能力。计算机可以应用机器视觉技巧,结合人工智能以及摄像机来进行图像识别。
根据神经网络的构建方式,一个相对简单的改变就可以让较大的图像变得更好处理。改变的结果就是我们所见到的卷积神经网络(CNNs,ConvNets)。
神经网络的广适性是他们的优点之一,但是在处理图像时,这个优点就变成了负担。卷积神经网络对此专门进行了折衷:如果一个网络专为处理图像而设计,有些广适性需要为更可行的解决方案做出让步。
对于任意图像,像素之间的距离与其相似性有很强的关系,而卷积神经网络的设计正是利用了这一特点。这意味着,对于给定图像,两个距离较近的像素相比于距离较远的像素更为相似。然而,在普通的神经网络中,每个像素都和一个神经元相连。在这种情况下,附加的计算负荷使得网络不够精确。
卷积神经网络通过消除大量类似的不重要的连接解决了这个问题。技术上来讲,卷积神经网络通过对神经元之间的连接根据相似性进行过滤,使图像处理在计算层面可控。对于给定层,卷积神经网络不是把每个输入与每个神经元相连,而是专门限制了连接,这样任意神经元只能接受来自前一层的一小部分的输入(例如3*3或5*5)。因此,每个神经元只需要负责处理一张图像的一个特定部分。(顺便提一下,这基本就是人脑的独立皮质神经元工作的方式。每个神经元只对完整视野的一小部分进行响应)。
卷积神经网络的优势
卷积神经网络是在Hub等人对猫的视觉皮层中细胞的研究基础上,通过拟生物大脑皮层构而特殊设计的含有多隐层的人工神经网络。卷积层、池化层、激活函数是卷积神经网路的要组部分。卷积神经网络通过局部感受野、权重共享和降采样3种策略,降低了网络模型的复杂度,同时对于平移、旋转、尺度缩放等形式的变有度的不变性。因此被广泛应用于图像分类、目标识别、语音识别等领域一般情况下,常见的卷积神经网络由输入层、卷积层、激活层、池化层、全连接层和最后的输出层构成。
卷积神经网络采用原始图像作为输入, 可以有效的从大量样本中学习到相应地特征, 避免了复杂的特征提取过程。由于卷积神经网络(CNN) 可以直接对二维图像进行处理, 因此, 在图像处理方面得到了广泛的应用, 并取得了较多的研究成果。该网络通过简单的非线性模型从原始图像中提取出更加抽象的特征,并且在整个过程中只需少量的人工参与。
卷积神经网络具有局部感知和参数共享两个特点,局部感知即卷积神经网络提出每个神经元不需要感知图像中的全部像素,只对图像的局部像素进行感知,然后在更高层将这些局部的信息进行合并,从而得到图像的全部表征信息。不同层的神经单元采用局部连接的方式,即每一层的神经单元只与前一层部分神经单元相连。每个神经单元只响应感受野内的区域,完全不关心感受野之外的区域。这样的局部连接模式保证了学习到的卷积核对输入的空间局部模式具有最强的响应。权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。而且卷积神经网络采用原始图像作为输入,可以有效的从大量样本中学习到相应地特征,避免了复杂的特征提取过程。
责任编辑:YYX
-
图像识别
+关注
关注
9文章
519浏览量
38216 -
卷积神经网络
+关注
关注
4文章
366浏览量
11837
发布评论请先 登录
相关推荐
评论