0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

美国要恢复半导体制造国,半导体已成为战略物资

lC49_半导体 来源:半导体行业观察 作者:半导体行业观察 2021-05-17 13:51 次阅读

美国要恢复半导体制造

在美国拜登政权提出将美国恢复为半导体制造大国之后,美国英特尔于2021年3月23日公布称,将投资200亿美元(约人民币1,300亿元)在美国亚利桑那州(Arizona)新建两个使用最尖端EUV(极紫外光刻)曝光设备的7纳米半导体工厂。其中一栋用于处理器方向,另一栋用于代工(Foundry),目标是在2024年启动运营。

进入2021年以来,车载半导体供不应求的问题愈发严重,全球汽车厂家相继减产。此外,全球唯一 一家实现5纳米工艺的台湾TSMC的代工订单纷至沓来,因此,用于智能手机、PC、服务器等各种方向的半导体都出现了供给不足的情况。

此外,由于2月13日日本福岛县地震的缘故,瑞萨工厂停工约三小时,且3月19日瑞萨工厂发生火灾,都促使了车载半导体供给紧张。此外,2月12日,美国得克萨斯州突发寒流,导致三星电子的Foundry、车载半导体的全球TOP1—-德国英飞凌、TOP2的荷兰NXP(恩智浦)的半导体工厂分别停电约36小时,再加上溶液管道被冻坏,又延长了恢复生产的时间。另外,各家半导体厂商都在竭力保持运营,如由于台湾供水不足问题日益严重,日均需要约20万吨水的TSMC采购了100只储水量为两万吨的水箱。

一言以蔽之,占Foundry领域约55%份额的TSMC的产能正日益紧迫、地震和寒流导致停电、干旱等自然灾害、火灾等因素导致全球半导体供给不足问题日益严重。

半导体已成为战略物资

2018年,全球范围内半导体出货金额达4,688亿美元(约人民币30,472亿元),出货数量达1兆多个(如下图1)。全球总人口约76亿,因此,粗略计算一下,全球平均一人一年消费约62美元(约人民币422.5元)、132个半导体。此外,今年(2021年)的半导体出货金额、出货数量都很有可能超过2018年的实绩,达到历史最高值。

1e647708-b4de-11eb-bf61-12bb97331649.png

图1:全球半导体出货金额、出货数量。(图片出自:WSTS的数据、笔者的预测)

已经有观点认为“半导体已经成为战略性物资”。如果没有半导体,所有产业都无法运营,此外,人类的文化生活也无法继续下去。因此,拜登政权提出了要将半导体的生产撤回美国的政策,这也是英特尔进军Foundry的理由所在。

英特尔曾于2012年初进军Foundry行业,后以失败告终。因此,此次进军是英特尔的第二次挑战。但是,笔者认为此次英特尔成功的可能性极低。

本文,通过分析英特尔在Foundry业界强大的理由,推导出英特尔无法在Foundry业界顺利运营的结果。

英特尔10纳米失败、开始Tick-Tock(工艺年-构架年)模式

英特尔发布的处理器是基于Tick-Tock(工艺年-构架年,以两年为单位推进微缩化)模式的。(图下图2)

1ee9fd1a-b4de-11eb-bf61-12bb97331649.jpg

图2:英特尔的Tick-Tock(工艺年-构架年)模式的失败。(图片出自:jbpress)

Tick-Tock(工艺年-构架年)模式是一种交替进行“微缩化”、“更新设计”以推进处理器进步的商业模式(Business Model)。比方说,在2015年不更改上一代的理论设计和掩膜图案(Mask Pattern),直接从22纳米进入14纳米,且被称为“Tick(工艺年)”。在次年的2016年,微缩化保持为14纳米,仅更新设计,且被称为“Tock(设计年)”。

然而,在英特尔从2016年的14纳米进入2017年的10纳米之际,由于10纳米工艺的启动失败,导致此模式的延续失败。结果即如下图3所示,被TSMC远远甩在了后面(TSMC于2018年量产7纳米、2019年采用尖端EUV、量产7纳米+)。

1f097c58-b4de-11eb-bf61-12bb97331649.png

图3:逻辑半导体与Foundry的技术走向图(Road Map)。(图片出自:jbpress)

换言之,英特尔10纳米的微缩化与TSMC、三星电子的7纳米几乎处于同一水准。因此,如果英特尔在2019年之前量产了10纳米,就不会被TSMC超越了。但是,直到2020年英特尔也没有顺利量产10纳米,在2020年第二季度的财报中,届时的CEO--鲍勃·斯旺先生指出:“到2022年,英特尔会决定究竟是继续进行工艺技术的研发、还是扩大Founry业务”,并且暗示了“在7纳米以后,可能会将业务委托给TSMC代工生产”。

如上所述,英特尔连续在尖端工艺的启动上遭遇了失败,能否在2024年顺利启动7纳米(采用EUV曝光设备、相当于TSMC当下量产的5纳米)工艺,还是无从得知。

但是,实际上,英特尔能否在Foundry方面获得成功与尖端工艺的启动并无太大关系。

那么,问题何在呢?自2016年开始的Tick-Tock(工艺年-构架年)模式才是英特尔Foundry 业务能否成功的关键所在。

TSMC的Foundry业务是什么样的?

下图4是近六年来TSMC的各个世代的半导体出货金额的推移表,如上文所述,TSMC是目前全球唯一 一家量产5纳米工艺的Foundry厂家。

1f4aa296-b4de-11eb-bf61-12bb97331649.jpg

图4:TSMC的各个世代的半导体销售额(~ 2020年第四季度)。(图片出自:笔者根据TSMC的财报制作了此表)

但是,TSMC的竞争力不仅仅在于尖端工艺方面。TSMC成立于1987年,因此其拥有自成立之初的0.25um的传统型半导体、也拥有最尖端的5纳米工艺,可以说TSMC一直在量产所有世代的半导体。

此处即为TSMC和英特尔的差异所在。对于TSMC而言,当量产后的世代不再具有尖端技术优势时,依旧会继续生产,而且这会给TSMC带来巨大的利润。此外,尖端半导体是在传统世代的基础上层层堆叠而成的。

的确,对于高性能PC和服务器而言,必须要采用由尖端工艺制造的半导体。但是,也有很多最新款的电子设备采用的是传统世代的半导体。如图1,在2018年半导体的出货数量达1兆多,即证明了这一点,其中大部分的半导体不是由尖端工艺、而是由传统工艺生产的。TSMC竞争力的源头之一在于其能够生产各个世代的半导体。

与此相对,英特尔仅能生产尖端工艺(当下的尖端世代为:14纳米-10纳米)的半导体。即使英特尔在2024年量产7纳米(相当于英特尔的5纳米)、并开始Foundry业务,也仅能生产14纳米以后的半导体。因此,就工艺的进步而言,可以说英特尔几乎无法满足2,000多家Fabless企业的要求。

半导体种类纷繁

TSMC生产的产品不仅有全球最尖端的逻辑半导体,还生产其他各种各样的产品,如有射频RF)半导体、模拟半导体、CMOS传感器、用于功率半导体的各种存储器,甚至还有微机电系统(MEMS,Micro Electro Mechanical Systems)。(如下图5)

1f6c130e-b4de-11eb-bf61-12bb97331649.png

图5:TSCM生产的各种各样的半导体产品。(图片出自:笔者摘选自TSMC发布的2019年度报告)

即使是用于某种特殊用途的逻辑半导体(Application Specific Integrated Circuit、ASIC),也分为消费电子方向、电脑方向、通信方向、车载等用途。(如下图6)

1fa4d126-b4de-11eb-bf61-12bb97331649.png

图6:各种ASIC的四半期出货金额(~ 2020年第四季度)。(图片出自:笔者依据WSTS的数据制作了此图)

其中,消费类电子包含冰箱、洗衣机、空气净化器等白家电以及液晶电视、蓝光光盘翻录工具(Blu-ray Recorder)、音频设备等黑家电。此外,以上这些家电都需要使用各种各样的半导体产品。

Foundry业务的本质在于可进行多品种、小批量生产。为了满足2,000多家Fabless企业的代工要求,TSMC运用各个世代的工艺(从传统世代到最尖端的世代)为客户生产各种各样的半导体产品。

然而,英特尔能够生产的仅有逻辑半导体中的处理器。如上文所述,仅能用14纳米以后的尖端工艺来生产(无法使用传统世代的工艺)。

总之,英特尔的业务模式是“Like Memory”。比方说,仅用2-3年就将DRAM提升至最尖端水平。其品种有PC和服务器、智能手机两个方向。即,少品种、大批量的模式。英特尔的处理器也是同样的模式。

这样的英特尔真的能开展Foundry业务吗?至少是无法模仿TSMC的业务模式。

设计由TSMC制定

TSMC通过运用自身的各个世代的工艺来生产各种各样的半导体产品,在Foundry领域占有一半以上的份额(如下图7)。就主要原因而言,有观点认为是因为TSMC是生产半导体的专家,仅需要汇集资源于工艺技术就可以了。

20fbc980-b4de-11eb-bf61-12bb97331649.png

图7:Foundry的销售额占比。(图片出自:DRAM eXchange)

作为TOP2的三星电子在生产处理器(用于三星Galaxy)之前,需要自行设计。因此,需要在设计部门投入较多的技术人员,也需要进行大规模的设计投资。

但是,TSMC之所以能够在Foundry领域占有如此大的市场规模,其自身的尖端工艺技术自不必说,TSMC的设计技术也是重要原因。

理由如下所示。

比方说,TSMC在发布5纳米技术之际,为了Fabless企业,在被称为EDA(Electronic Design Automation)的设计工具中,筹备了“Cell Library(单元库)”。在“Cell Library(单元库)”中筹备有英国ARM的处理器内核(Processor Core)、美国德州仪器(Texas Instruments, TI)的数字信号处理器(Digital Signal Processor,DSP)、各种存储半导体的Cell(也叫“IP”)。

TSMC不仅保证了以上这些Cell的可操作性,还完成了它们相对应的生产工艺。因此,Fabless企业仅需像排列乐高积木一样将“Cell Library(单元库)”中的Cell 排列起来,就可以设计出需要的半导体。而且,TSMC会为他们生产半导体。

如果Fabless企业不使用“Cell Library(单元库)”、而从零开始设计半导体的话,其设计的半导体可能无法工作。或者说,大部分情况下是无法工作的。此外,即使勉强可以工作,也无法得知生产的良率如何。

然而,TSMC拥有服务于各个世代的、各种半导体的“Cell Library(单元库)”。运用“Cell Library(单元库)”,Fabless企业能够毫无风险(No Risk)地设计半导体。而且,TSMC会对Fabless企业设计的半导体负责。即,作为生产专家的TSMC通过控制设计,获取Foundry的市场份额。

英特尔永远也无法成为TSMC

15年前(2006年),笔者担任同志社大学教师之时,原九州工业大学的川本洋教授告诉了笔者TSMC的优势所在。

全球的Fabless企业只要连接到TSMC的“Cell Library(单元库)”,任何时候、任何地点、任何人都可以进行设计。(下图8)

图8:任何时间、任何地点、任何人都可以进行同样的设计。(图片出自:笔者基于九州工业大学·川本教授的设计学习资料制作了此图)

可以说TSMC一手遮天地为全球的Fabless的代工(如下图9)。此外,TSMC每接到一笔代工订单,其利润就增长一份!

图9:Oligopoly of SOC Business。(图片出自:笔者基于九州工业大学·川本教授的设计学习资料制作了此图)

TSMC之所以在Foundry方面有压倒性的优势,原因就在于以上这种结构模式,其在工艺技术方面的领先地位是其优势的源头所在。

而如今,英特尔却要进军TSMC独霸的Foundry领域!但是,英特尔却永远也赶不上TSMC。因此,即便英特尔竭尽全力,也无法战胜TSMC。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19156

    浏览量

    229075
  • 英特尔
    +关注

    关注

    60

    文章

    9879

    浏览量

    171432
  • 半导体
    +关注

    关注

    334

    文章

    26995

    浏览量

    216141

原文标题:英特尔无法成为台积电

文章出处:【微信号:半导体科技评论,微信公众号:半导体科技评论】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ESD静电对半导体制造的影响

    半导体制造业是一个高度精密和复杂的行业,它依赖于先进的技术和严格的生产控制来制造微型电子元件。在这个过程中,静电放电(ESD)是一个不可忽视的问题,因为它可能对半导体器件的性能和可靠性产生重大
    的头像 发表于 11-20 09:42 111次阅读

    半导体设备,变天了

    持续扩大的态势。 01 半导体设备市场规模,屡创新高 根据国际半导体产业协会(SEMI)数据显示,2020年中国大陆首次成为全球最大的半导体设备市场,销售额增长39%,达到187.2亿
    的头像 发表于 11-19 09:30 265次阅读
    <b class='flag-5'>半导体</b>设备,<b class='flag-5'>要</b>变天了

    想了解半导体芯片的设计和生产制造

    如何从人、产品、资金和产业的角度全面理解半导体芯片?甚是好奇,望求解。
    发表于 11-07 10:02

    中国半导体的镜鉴之路

    地位,他相应的会有一个很强的“反弹”。 1985年,日本第一次登顶成为全球芯片霸主之后,1986年,美国发动了第一次美日半导体战争,后面我会讲为什么叫第一次。 后来,签订了美日半导体
    发表于 11-04 12:00

    半导体制造过程解析

    在这篇文章中,我们将学习基本的半导体制造过程。为了将晶圆转化为半导体芯片,它需要经历一系列复杂的制造过程,包括氧化、光刻、刻蚀、沉积、离子注入、金属布线、电气检测和封装等。
    的头像 发表于 10-16 14:52 398次阅读
    <b class='flag-5'>半导体制造</b>过程解析

    半导体制造设备对机床的苛刻要求与未来展望

    在科技日新月异的今天,半导体产业作为现代电子工业的基础,其重要性不言而喻。随着5G、人工智能、物联网等前沿技术的快速发展,全球对高性能芯片的需求急剧上升,这直接推动了半导体制造设备市场的繁荣。而
    的头像 发表于 09-12 13:57 576次阅读
    <b class='flag-5'>半导体制造</b>设备对机床的苛刻要求与未来展望

    半导体制造洁净室如何选择粒子计数器?考虑哪方面内容

    半导体制造洁净室如何选择粒子计数器?考虑哪方面内容
    的头像 发表于 06-13 14:21 408次阅读
    在<b class='flag-5'>半导体制造</b>洁净室如何选择粒子计数器?<b class='flag-5'>要</b>考虑哪方面内容

    喜讯 | MDD辰达半导体荣获蓝点奖“最具投资价值奖”

    电子、网络通信、智能家居等众多领域,已成为半导体分立器件制造及解决方案提供商和最受客户认可的品牌之一。 深圳市电子商会于2015年发起首届“蓝点奖”评选,到今年已成功举办七届奖项评选活
    发表于 05-30 10:41

    半导体制造技术节点:电子科技飞速发展的幕后英雄

    半导体制造技术是现代电子科技领域中的一项核心技术,对于计算机、通信、消费电子等众多产业的发展具有至关重要的影响。随着科技的不断进步,半导体制造技术也在不断发展,不断突破着制造的极限。其中,半导
    的头像 发表于 03-26 10:26 1077次阅读
    <b class='flag-5'>半导体制造</b>技术节点:电子科技飞速发展的幕后英雄

    实现气候目标的可持续半导体制造

    来源:SiSC半导体芯科技 编译 去碳化已成为全球大多数半导体公司的一项重要任务,但说起来容易做起来难。以下是半导体制造商和其他企业可以采取的减少碳足迹的措施。 国内
    的头像 发表于 01-26 16:11 353次阅读

    台湾半导体制造公司(TSMC)第二座亚利桑那工厂推迟开工

    台湾半导体制造公司(TSMC)已经确认,由于仍在等待美国政府补助的确定,该公司
    的头像 发表于 01-20 11:30 1316次阅读
    台湾<b class='flag-5'>半导体制造</b>公司(TSMC)第二座亚利桑那工厂推迟开工

    [半导体前端工艺:第二篇] 半导体制程工艺概览与氧化

    [半导体前端工艺:第二篇] 半导体制程工艺概览与氧化
    的头像 发表于 11-29 15:14 1429次阅读
    [<b class='flag-5'>半导体</b>前端工艺:第二篇] <b class='flag-5'>半导体制</b>程工艺概览与氧化

    国产划片机:从追赶到超越,中国半导体制造的崛起之路

    在当今的高科技世界中,半导体制造已成为电子设备行业的核心驱动力。在这场技术革命的浪潮中,中国半导体产业迅速崛起,不断突破技术壁垒,逐渐成为全球半导体
    的头像 发表于 11-28 19:56 718次阅读
    国产划片机:从追赶到超越,中国<b class='flag-5'>半导体制造</b>的崛起之路

    领先的功率半导体制造

    随着科技的飞速发展,功率半导体已经深入到我们生活的各个领域。从我们日常使用的家电,到环保出行的电动汽车,再到航空航天领域的飞机和宇宙飞船,都离不开功率半导体。下面介绍的就是市场上功率半导体制造商中的领导者。
    的头像 发表于 11-27 14:53 496次阅读
    领先的功率<b class='flag-5'>半导体制造</b>商