0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

采用雪崩管级联实现UWB脉冲产生电路的设计

电子设计 来源:电子技术应用 作者:刘咏华,郑继禹,仇 2021-05-22 11:12 次阅读

作者:刘咏华 , 郑继禹 , 仇红冰

目前,UWB技术已经成为国际无线通信技术研究的新热点,日益受到重视和关注。2002年2月14日,美国FCC(联邦通信委员会)首次批准了UWB产品的民用销售和使用。 UWB即超宽带,它是一种利用纳秒级极窄脉冲发送信息的技术,其信号相对带宽即信号带宽与中心频率之比大于25%。一个典型的中心频率为2GHz(即宽度为500ps)的UWB脉冲信号的时域波形及其频谱图分别如图1所示。

o4YBAGCod5mAD8f8AAAnugy1TtE771.png

一般通信技术都是把信号从基带调制到载波上,而UWB则是通过对具有很陡上升和下降时间的冲激脉冲进行直接调制?从而具有GHz量级的带宽。UWB具有发射信号功率谱密度低(数十mW范围)、难以截获、抗多径、低成本、极好的穿透障碍物能力等优点,尤其适用于室内等密集多径场所的高速无线接入和通信、雷达、定位、汽车防撞、液面感应和高度测量应用。

UWB信息调制方式需结合UWB传播特性和脉冲产生方法综合考虑,通常可采用脉冲位置调制(Pulse Position Modulation)和正反极性调制(Antipodal Modulation),这里采用PPM调制。

从本质上看,UWB无线技术是发射和接收超短电磁能量脉冲的技术,它采用极窄脉冲直接激励天线。因此,极窄脉冲的产生就显得尤为重要。目前,UWB极窄脉冲的产生方法主要通过雪崩三极管、隧道二极管或阶跃恢复二极管实现。其中隧道二极管和阶跃恢复二极管所产生的脉冲,上升时间可以达几十至几百皮秒,但其幅度较小,一般为毫伏级。采用了利用雪崩三极管的雪崩效应的方案,同时采用雪崩三极管级联结构来产生极窄脉冲,最后得到输出脉冲上升时间约为863ps,幅度约为1.2V。

1 雪崩效应理论

当NPN型晶体管的集电极电压很高时,收集结空间电荷区内的电场强度比放大低压运用时大得多。进入收集结的载流子被强电场加速,从而获得很大能量,它们与晶格碰撞时产生了新的电子-空穴对,新产生的电子、空穴又分别被强电场加速而重复上述过程。于是流过收集结的电流?quot;雪崩“式迅速增长,这就是晶体管的雪崩倍增效应。

晶体管在雪崩区的运用具有如下主要特点:

(1)电流增益增大到正常运用时的M倍,其中M为雪崩倍增因子。

(2)由于雪崩运用时集电结加有很高的反向电压,集电结空间电荷区向基区一侧的扩展使有效基区宽度大为缩小,因而少数载流子通过基区的渡越时间大为缩短。换言之,晶体管的有效截止频率大为提高。

(3)在雪崩区内,与某一给定电压值对应的电流不是单值的。并且随电压增加可以出现电流减小的现象。也就是说,雪崩运用时晶体管集电极-发射极之间呈负阻特性。 (4)改变雪崩电容与负载电阻,所对应的输出幅度是不同的。换言之,输出脉冲与雪崩电容和负载电阻有关。

下面对雪崩管的动态过程进行分析。在雪崩管的动态过程中,工作点的移动相当复杂?现结合原理图所示电路(图4)进行分析(这里主要分析雪崩管Q1的工作过程,其余类同)。

在电路中近似地将雪崩管静态负载电阻认为是Rc,当基极未触发时,基极处于反偏,雪崩管截止。根据电路可列出雪崩管过程的方程为:

pIYBAGCod5KAarsuAAAGTzB57rI815.png

式中:i为通过雪崩管的总电流,ic为通过静态负载Rc的电流,ia为雪崩电流,uc(0)为电容C初始电压,R为动态负载电阻,C为雪崩电容,tA为雪崩时间。Vce为雪崩管Q1集-射级电压,Vcc为电路直流偏置电压。

从(1)式可求解出雪崩过程动态负载线方程式为:

pIYBAGCod4qAQhRMAAAFsc_8Ax0577.png

在具体的雪崩管电路中,Rc为几千欧(本实验中取为6.8kΩ),而R则为几十欧(本实验中取为51Ω),因此Rc》》R。雪崩时雪崩电流ia比静态电流ic大得多,即ia》》ic,所以i≈ia。于是(2)式可简化为?

pIYBAGCod4KAT10EAAAEFQD8QPo295.png

因为0~tA这段雪崩时间很短,因此可以略去,即得

o4YBAGCod3mAFxJSAAAEF2KlYgM253.png

式(3)和式(4)表明雪崩状态下,动态负载线是可变的。

雪崩管在雪崩区形成负阻特性,负阻区处于BVCEO与BVCBO之间,当电流再继续加大时,则会出现二次击穿现象,如图2所示。

pIYBAGCod2-ALvtpAAALtvqUfyo106.png

图2中,电阻负载线I贯穿了两个负阻区。若加以适当的推动,工作点a会通过负阻区交点b到达c,由于雪崩管的推动能力相当强,c点通常不能被封锁,因而通过第二负阻区交点d而推向e点。工作点从a到e一共经过两个负阻区,即电压或电流信号经过两次正反馈的加速。因此,所获得的信号其电压或电流的幅度相当大,其速度也相当快。

当负载线很陡时,如图2中负载线II所示,它没有与二次击穿曲线相交而直接推到饱和区,这时就不会获得二次负阻区的加速。

本文介绍的超宽带UWB极窄脉冲发生器即是利用雪崩管的二次负阻区加速作用,来达到产生极窄脉冲的目的。

2 UWB脉冲产生电路及分析

2.1 电路原理

UWB发射机系统的简化框图如图3所示,系统的信息调制采用PPM调制。本文主要讨论UWB脉冲产生电路的设计,电路原理图如图4所示。

2.2 电路分析

当触发脉冲尚未到达时,雪崩管截止,电容C2、C4在Vcc的作用下分别通过电阻R1、R和R2、R3充电。电容C通过Rc充电(充电后其电压近似等于电源电压Vcc)。当一个足够大的触发脉冲到来后,使晶体管工作点运动到不稳定的雪崩负阻区,Q1雪崩击穿,产生快速增大的雪崩电流,导致电容C经由晶体管Q1快速放电,从而在负载电阻R上形成一个窄脉冲。由于雪崩电流很大,因此获得的窄脉冲有较高的峰值;又由于电容C储存的电荷很有限(一般电容量只有几皮法至几百皮法),因此脉冲宽度也有限。也就是说,当开始雪崩以后,由于晶体管本身以及电路分布参数的影响,使得雪崩电流即电容C的放电电流只能逐渐增大;而到达某一峰值后,又由于电容C上电荷的减少使得放电电流逐渐减小。前者形成了脉冲的前沿,而后者则形成了脉冲的后沿。 Q1雪崩击穿后,电容C放电注入负载R。这个电压经过电容C2,导致Q2过压并且雪崩击穿。同理Q3也依次快速雪崩击穿。由于雪崩过程极为迅速,因此这种依次雪崩的过程还是相当快的,从宏观上可以把它看作是同时触发的。因此,在负载上就可以得到一个上升时间非常短的UWB极窄脉冲。

o4YBAGCod2aANEdWAAAui3WnQLQ792.png

2.3 元件参数选择

雪崩晶体管电路中应选择的电路参数主要为雪崩晶体管Vcc、C、RC及加速电容等。

①雪崩晶体管:雪崩晶体管的选择依据主要是雪崩管的输出振幅及边沿应满足要求。

②偏置电压Vcc:必须适当选择偏置电压Vcc,使雪崩晶体管能够发生雪崩效应,同时还应当满足Vcc≤BVcbo。

③雪崩电容:雪崩电容C不应选择太大,C太大,输出脉冲宽度加宽,电路恢复期太长;但也不能太小,C太小,输出脉冲振幅减小,而且影响电容分布。通常取为几皮法到几十皮法。一般应选用瓷片电容或云母电容。

在一定范围内,电容C值越小,脉冲宽度也越小,但幅度也会变得越小。这个结果由仿真和实验均得到验证如表1所示。

o4YBAGCod1-AAkhNAAASpg2yVfQ052.png

当电容C值小于3皮法时,由于其他寄生参数的影响,宽度的减小已不明显。

④集电极电阻RC:集电极电阻RC应保证雪崩电路能够在静止期内恢复完毕,即(3~5)(RC+RL)C≤TS,式中TS为触发脉冲重复周期。

通常RC选为几千欧姆到几十千欧姆。若取RC=5kΩ、C=50pF,则TS≈1μs即触发脉冲重复频率应小于1MHz。若取RC=50kΩ,则TS≈10μs,触发脉冲重复频率应小于100kHz。RC不能选得太小,否则雪崩晶体管可能长时间处于导通状态,导致温度过高而烧坏。 ⑤加速电容:电路中C3、C5为加速电容,它们的主要作用是帮助加速基带脉冲,减少脉冲的延迟时间和上升时间。

另外,电路还采用了雪崩管级联的设计,原理上可以看作是一个Marx发生器。这样可以增加所产生脉冲的幅度,同时还可以使脉冲的宽度变得更窄。首先,通过雪崩管的级联,使加在各级雪崩管集电极的电压递增(每级的增量约为Vcc)。而集电极电压的增大可以使雪崩管的导通内阻减小,从而缩短脉冲的上升时间tr。其次,基极注入电流Ib会随之增大,tr也将减小。另外,雪崩管的级联结构还可以相当于对各级的输出脉冲进行了乘积,这样也会使脉冲的上升时间tr得到进一步的减小。这里关键是解决好雪崩管触发的同时性问题?由于脉冲很窄,这一点就尤为突出。如果雪崩管不能很好地同时触发,反而会增加输出脉冲的宽度。为了获得同时触发,就必须要尽量选用触发参数相同的雪崩管。如果有的雪崩管触发参数不同,则需要调整电路中的元件参数,使其同时触发。实验中A、B、C各点输出脉冲的宽度分别为:2.43ns、1.76ns、1.22ns;上升时间分别为1.2ns、1.12ns、863ps。与理论分析所得结论相符。

2.4 实验结果

实验中采用两级级联结构,最后得到输出脉冲波形,如图5所示。

pIYBAGCod1iAIgFHAAASo1t7jo4821.png

从图5中可以看到输出脉冲的幅度约为1.2V,宽度约为1.22ns(半宽度),上升时间约为863ps。采用的雪崩三极管为3DB2B3DB2B型(tr≤2ns)。触发脉冲的周期为1μs,占空比为50%。该波形是用Agilent公司的Infiniium 600MHz示波器测得的。

采用雪崩管级联的方法,成功地完成了一种超宽带(UWB)脉冲产生电路的设计,最后得到的输出脉冲其宽度和上升时间均较好地符合了要求。今后的工作将致力于提高输出脉冲的幅度,进一步减小脉冲的宽度和上升时间。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 三极管
    +关注

    关注

    142

    文章

    3599

    浏览量

    121612
  • 无线通信
    +关注

    关注

    58

    文章

    4513

    浏览量

    143404
  • 晶体管
    +关注

    关注

    77

    文章

    9629

    浏览量

    137815
收藏 人收藏

    评论

    相关推荐

    雪崩三极选型求助 紧急

    我需要做一个高斯脉冲发生器,用到雪崩三极,要求如下:产生时域脉宽0.5ns的高斯脉冲,幅值100V-1000V,由于
    发表于 08-28 11:02

    功率MOSFET重复雪崩电流及重复雪崩能量

    不同,对测量结果的影响非常大。IAR和EAR的测试电路和单脉冲雪崩电流以及单脉冲雪崩能量一样,中、低功率MOSFET使用去耦测量
    发表于 09-22 11:44

    使用AD8367俩级级联采用电压控制产生自激

    使用AD8367俩级级联采用电压控制,结果产生自激。使用的电路采用AD8367文档提供的LC参数匹配电路
    发表于 03-05 12:13

    利用雪崩三极产生高斯脉冲

    `仿真的时候只有单极性脉冲,实际连接电路会同时产生单极性脉冲和二阶高斯脉冲,而且幅值还很低,这是由什么问题造成的?`
    发表于 11-24 10:27

    如何利用TH-UWB02超宽带发射芯片实现超宽带窄脉冲发射机电路

    本文利用单片机和自主设计的TH-UWB02超宽带发射芯片实现了一个超宽带窄脉冲发射机电路,能够发送高速率的窄脉冲超宽带脉冲序列,由接收机解调
    发表于 03-18 07:22

    怎么实现一种UWB脉冲发生器的设计?

    怎么实现一种UWB脉冲发生器的设计?
    发表于 06-07 07:08

    雪崩二极的噪声是如何产生的?

    雪崩二极如何帮助防止过电压?雪崩二极的噪声是如何产生的?
    发表于 06-18 09:24

    一种超宽脉冲发生器的设计

    超宽带UWB是一种利用纳秒级窄脉冲发送信息的技术。重点讨论了一种采用级联雪崩晶体结构
    发表于 07-04 15:09 14次下载

    一种用于UWB—TWSR的窄脉冲产生电路的设计

    摘要:实现TWSR(穿墙探测雷达)技术的关键之一是如何设计并产生可以控制的UWB脉冲。为此,文中介绍了TWSR的基本概念及工作原理,讨论了了几种U
    发表于 05-14 09:11 46次下载

    雪崩晶体在探地雷达中的应用

    介绍了无载波脉冲探地雷达的现状及雪崩三极一般工作原理,并且对其雪崩过程提出了一种新的仿真思路。介绍了一种双极性雪崩三极
    发表于 07-31 10:33 28次下载

    触发晶体开关和用于单脉冲选取的雪崩电路分析

    摘 要:分析了采用雪崩电路实现在给晶体加压或退压的过程中,晶体的椭球(折射率)方程发生变化,从而改变了光的传播特性,以达到利用光开关选取单
    发表于 12-13 22:14 47次下载

    雪崩渡越时间二极,雪崩渡越时间二极是什么意思

    雪崩渡越时间二极,雪崩渡越时间二极是什么意思 雪崩二极,亦称为“碰撞
    发表于 03-05 09:46 2481次阅读

    采用UWB技术的脉冲发生器的设计与实现

      传统数字通信是通过在信道中发送包含信息的模拟波形来实现通信的,而超宽带(UWB)通信是通过发送和检测极窄脉冲序列来实现通信。这种脉冲的脉
    发表于 10-26 10:50 1143次阅读
    <b class='flag-5'>采用</b><b class='flag-5'>UWB</b>技术的<b class='flag-5'>脉冲</b>发生器的设计与<b class='flag-5'>实现</b>

    UWB雷达脉冲信号发生器的设计

    详细分析了雪崩三极原理,利用雪崩三极雪崩特性实现了超宽带雷达窄
    发表于 11-30 16:50 54次下载
    <b class='flag-5'>UWB</b>雷达<b class='flag-5'>脉冲</b>信号发生器的设计

    什么是雪崩击穿?单脉冲雪崩与重复雪崩有何不同?

    什么是雪崩击穿?单脉冲雪崩与重复雪崩有何不同?雪崩击穿失效机理是什么? 雪崩击穿是指在电力系统中
    的头像 发表于 11-24 14:15 2424次阅读