前言
赫兹对于我们来说,再也熟悉不过;赫兹(Hz)描述的是每一秒中发生的周期性事件次数,作国际频率单位,也常见于描述电磁波、信号、声音的性质。赫兹派生单位还包括千赫兹(KHz)兆赫兹(MHz)、吉赫兹(GHz)等。由于“Tera”本身描述的是10的12次方数量级,由此,TeraHertz,即太赫兹,可以简单的理解为吉赫兹的下一数量级单位。
太赫兹的那段“黑”历史
红外技术比太赫兹技术早发展了近50年,如今红外技术与产品唾手可得,加上此次疫情的“雪上加霜”,红外产品得以大放异彩。反观太赫兹,因为光学器件成本过于昂贵,国内对太赫兹的研究也落后于国际水平,普遍大众鲜有对其进行尝试,无法达到产业化的需求,仅在为数不多的航天科技、安检与实验室中可以看到太赫兹的身影。
早在20世纪80年代,由于缺少稳定有效的太赫兹源和探测器,以及对太赫兹的相关研究稀少,其一度被称为“太赫兹鸿沟”,技术尚待挖掘。如今,随着新一代太赫兹源与探测器的不断发展问世,这个“鸿沟”正在快速被填补,技术也蓬勃发展。
实际上, 早在一百多年前, 就有科学工作者涉及过该波段的研究,即在1896年和1897年,Rubens和Nichols对该波段进行先期的探索。在之后的近百年间, 太赫兹科学与技术得到了初步的发展, 许多重要理论和初期的太赫兹器件相继问世。而“ Terahertz”这个词语正式在文章中出现却是在1974年左右, Fleming用它来描述迈克尔逊干涉仪所覆盖的一段频段的谱线。
现代太赫兹科学与技术的真正发展则是在20世纪80年代中期, 随着一系列新技术、新材料的发展, 特别是超快技术的发展, 使得获得宽带稳定的脉冲太赫兹源成为一种常规技术, 太赫兹技术也从此得以迅速发展。由于THz所处的特殊电磁波谱的位置, 它有很多优越的特性, 有非常重要的学术和应用价值, 使得THz受到全世界各国政府的支持, 并给予极大的关注。美国、欧州和日本尤为重视。
我国政府在2005年11月专门召开了“香山科学会议”, 邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向, 并制定了我国THz技术的发展规划。我国的THz学科研究受到政府和各研究机构的广泛重视。
国家科技部、国家自然科学基金委、863计划(民口和军口)及第270次香山科学会议等都将太赫兹科学技术列为研究主题。然而,太赫兹技术的发展仍然受到太赫兹辐射源、太赫兹探测器以及许多太赫兹功能器件的制约,尽管这些领域的研究已经进行了二十多年,但与激光技术相比,太赫兹技术所需要的许多关键器件还是十分有限的,很多技术尚待开发,甚至一些基础理论研究也是急需发展的。
太赫兹特性与应用
太赫兹波是指频率在0.1~10THz范围内的电磁波,波长在3mm~30μm之间,是目前电磁波频段各国有着大量竞争的前沿领域,也是人类认知最少的一个频段,行业人士常称太赫兹为光电行业的“最后一块拼图”,也是基于其在电磁波频段上的巨大应用潜能与独特优越性。
太赫兹波其介于微波与远红外波段,覆盖部分毫米波与远红外频段,因此太赫兹波本身也是具有红外辐射与毫米波的特性的。一般来说,太赫兹普遍的特性如下:
01
强穿透性和低能性
指太赫兹波能够穿透非极性与非金属物质如塑料、陶瓷、树木、布料和复合材料等;另外,太赫兹波本身光子能量低,只有大约X射线光子能量的一个百分点,不具有电离特性,对于人体等大部分活体组织是安全无害的,因此也非常适合安检领域。
在其它无损检测领域,太赫兹也大放异彩。例如,检测样品缺陷,包括裂痕、错位或者存在杂质。食品和农业中,可以通过检测食物或者种子的光谱信息,判断食品质量或者含有的潜在危害物质(添加剂、转基因分子)。
军事方面,与微波雷达技术比较,太赫兹雷达可以对小的目标进行有效探测,并且能够对位置进行精确判断,还能够实现定位的保密性,分辨率强。红外雷达和激光雷达相比太赫兹的雷达具有很强的穿透能力,对烟雾和沙尘天气都 能够实现穿透效果。具有自身独特的穿墙能力,太赫兹的雷达可以探测到敌方隐蔽的武器,还能够对伪装埋伏的 武装人员进行有效探测。
02
带宽高
通常来讲,传输速率随着载波频率增加而增加。太赫兹显然大于微波整体带宽,因此其能够实现的带宽级也更高。目前手机通讯的频 率只能够达到太赫兹波的千分之一,太赫兹波在进行无线传输过程当中,能够以 10GB/s 速度传递,是 6G 的理想波段选择。未来太赫兹很大程度上也需要通过其通信领域的应用进行普及。
不过,由于水、沙尘等颗粒物对太赫兹波的吸收,太赫兹传播会受到不同程度的衰减,特别在沙尘暴与雨天天气情况。因此,地面远距离通信不适合太赫兹波,而在卫星间通信与短程地面通信等等有较大潜力。
03
指纹特性
许多生物大分子在太赫兹频段有明显的吸收峰,分子发生振动、转动等现象所对应的频率也位于太赫兹波段。理论上,太赫兹波对若分子间作用和分子低能级的振动与转动更敏感。因此,我们可以利用太赫兹光谱来鉴别物质,更好对结构差异细微的有机分子进行识别等。
值得一提的点是,水的介电特性,即水对太赫兹的强吸收性也为其医疗应用提供了便利:人体细胞在病变后往往组织水量较正常组织会发生变化,因此可以利用太赫兹定位病灶与其大小。该技术能快速辨别病变区域的大小、形态等,减少患者的痛苦,还会提高医疗诊断效率。
除此之外太赫兹波还有诸如强相干性和瞬态性等特点,在检测技术和时间分辨研究中也有很多优势。
结语
太赫兹技术以上的介绍能够为读者普及关于太赫兹技术的基本概念,其中的应用涉及到无损检测与通信。至于成像应用,我们将在下一篇细说,为大家带来关于太赫兹成像的实际案例,以及近期推出的虹科太赫兹源TeraCascade产品。我们下期再见!
编辑:jq
-
光子
+关注
关注
0文章
110浏览量
14429 -
电磁波
+关注
关注
21文章
1454浏览量
53832 -
能量
+关注
关注
0文章
104浏览量
16485 -
太赫兹
+关注
关注
10文章
336浏览量
29178
原文标题:虹科光电 | 了解Thz太赫兹技术——未来频段
文章出处:【微信号:Hongketeam,微信公众号:广州虹科电子科技有限公司】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论