0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高斯光学,理想的光学系统

新机器视觉 来源:科普中国 作者:科普中国 2021-06-01 15:52 次阅读

引言

所谓的理想光学系统,就是对足够大空间内的各个点能以足够宽光束成完善像、理想像的光学系统。

1

理想光学系统

高斯光学(Gaussian optics)是指1841年C.高斯建立的研究理想光学系统的几何光学理论。它适用于任何结构的光学系统,但所研究的光线必须满足近轴条件。

所谓近轴条件,指的是光线与系统光轴的夹角α的正弦值可用角值(单位为弧度)代替,即sinα≈tanα≈α,cosα≈1。为便于一般地了解光学系统的成像性质和规律,在研究近轴区成像规律的基础上建立了理想光学系统的光学模型。

理想光学系统将物空间的同心宽光束转换到像空间的同心光束,这种从一个空间变换到另一个空间的情况,在数学上可以归结成“共线变换”或“共线成像”的问题,这种共轴理想光学系统理论是由高斯建立起来的,因此人们也把理想光学系统理论称为高斯光学。

2

物像关系的特性

1、点成点像:即对于物空间的每一点,在像空间必有一个点与之相对应,且只有一个点与之对应,这样的两个对应点称为物像空间的共轭点(如下图中的A点和A′点)。

2、线成线像:即对于物空间的每一条直线,在像空间必有一条直线与之相对应,且只有一条直线与之对应,这样的两条对应直线称为物像空间的共轭线(如下图中的BC和B′C′)。

3、平面成平面像:即物空间的每一个平面,在像空间必有一个平面与之相对应,且只有一个平面与之对应,这样的两个对应平面称为物像空间的共轭面(如下图中的PQ面和P′Q′面)。

由此推广,如果物空间上任意一点D位于直线BC上,那么其在像空间的共轭点D′也必位于共轭线B′C′上。同样,物空间中的一个同心光束必对应于像空间中的另一同心光束。上述这种点对点、直线对直线、平面对平面的成像,称为共线成像。

pIYBAGC154-AKFsRAACAHu0Ao8o738.png

3

基点 基面

如下图所示,O1和Ok两点分别是理想光学系统第一面和最后一面的顶点,FO1OkF′为光轴。物空间的一条平行于光轴的直线AE1经光学系统折射后,其折射光线GkF′交光轴于F′点,另一条物方光线FO1与光轴重合,其折射光线OkF′无折射地仍沿光轴方向射出。

由于像方GkF′、OkF′分别与物方AE1、FO1相共轭,因此,交点F′为AE1和FO1交点(位于物方无穷远的光轴上)的共轭点,所以F′是物方无穷远轴上点的像,所有其它平行于光轴的入射光线均会聚于点F′,点F′称为光学系统的像方焦点(或称后焦点、第二焦点)。显然,像方焦点是物方无限远轴上点的共轭点。

pIYBAGC154-Adzc7AACJEIyN5t8962.png

基点 基面

同理,点F称为光学系统的物方焦点(或称前焦点、第一焦点),它与像方无穷远轴上点相共轭。任意一条过F点的入射光线经理想光学系统折射后,出射光线必平行于光轴。

通过像方焦点F′且垂直于光轴的平面,称为像方焦平面(像方焦面);通过物方焦点F且垂直于光轴的平面,称为物方焦平面(物方焦面)。

显然,像方焦平面的共轭面在无穷远处;同样,物方焦平面的共轭面也在无穷远处。像方焦平面上任何一个物点发出的光束,经理想光学系统出射后必为一平行光束;任何一束入射的平行光,经理想光学系统折射后,必会聚于像方焦平面上的某一点。

必须指出,焦点和焦面是理想光学系统的一对特殊的点和面。物方焦点F和像方焦点F′彼此之间不共轭,同样,物方焦平面和像方焦平面也不共轭。

如下图所示,O1和Ok两点分别是理想光学系统第一面和最后一面的顶点,FO1OkF′为光轴。物空间的一条平行于光轴的直线AE1经光学系统折射后,其折射光线GkF′交光轴于F′点,另一条物方光线FO1与光轴重合,其折射光线OkF′无折射地仍沿光轴方向射出。由于像方GkF′、OkF′分别与物方AE1、FO1相共轭,因此,交点F′为AE1和FO1交点(位于物方无穷远的光轴上)的共轭点,所以F′是物方无穷远轴上点的像,所有其它平行于光轴的入射光线均会聚于点F′,点F′称为光学系统的像方焦点(或称后焦点、第二焦点)。显然,像方焦点是物方无限远轴上点的共轭点。

如下图所示,延长入射光线AE1和出射光线GkF′,得到交点Q′;同样,延长入射光线BEk和G1F,可得交点Q。

设光线AE1和BEk的入射高度相同,且都在子午面内。显然点Q和点Q′是一对共轭点。点Q是光线AE1和FQ交成的“虚物点”;点Q′是光线BEk和GkF′交成的“虚像点”。

过点Q和点Q′作垂直于光轴的平面QH和Q′H′,则这两个平面亦相互共轭。由图可知,位于这两个平面内的共轭线段QH和Q′H′具有相同的高度,且位于光轴的同一侧,故其垂轴放大率β =+1。我们称垂轴放大率为+1的这一对共轭面为主平面,其中的QH称为物方主平面(或前主面、第一主面),Q′H′称为像方主平面(或后主面、第二主面)。

物方主平面QH与光轴的交点H称为物方主点,像方主平面Q′H′与光轴的交点H′称为像方主点。

pIYBAGC154-AZnrvAADarch9xP8290.png

基点 基面

一对主点和一对焦点构成了光学系统的基点,一对主面和一对焦面构成了光学系统的基面,它们构成了一个光学系统的基本模型(下图所示)。

对于理想光学系统,不管其结构(r,d,n)如何,只要知道其焦距值和焦点或主点的位置,其性质就确定了。

pIYBAGC154-AdDwTAAAlUza5OIs352.png

参考文献:

【1】施特格。 机器视觉算法与应用[M]。 清华大学出版社, 2008.

【2】理想光学系统。百度百科

【3】工程光学(六)——几何光学(进阶).Tyalmath 。知乎

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光学系统
    +关注

    关注

    4

    文章

    243

    浏览量

    18382

原文标题:【视觉知识】高斯光学,理想的光学系统

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    将测量的太阳光谱导入VirtualLab Fusion

    摘要 光源是任何光学系统的重要组成部分,而能够复现光源最相关的物理特性的模型是任何光学仿真成功的基础。一个非常常用的光源是太阳发出的光,其复杂的辐射光谱是其最显著的特征之一(黑体光谱)。在这个用例中
    发表于 01-23 10:22

    反射光栅的光学系统结构中光栅系统的配置与优化

    “Littrow结构”是指那些包含反射光栅的光学系统,其中光栅方向被设置为可以使工作阶(通常是第一衍射阶)沿着入射光束的方向返回。这可以用于各种不同的应用,例如,在激光谐振器的背景下,光栅可以
    发表于 01-11 13:19

    光学系统的3D可视化

    **摘要 ** 为了从根本上了解光学系统的特性,对其组件进行可视化并显示光的传播情况大有帮助。为此,VirtualLab Fusion 提供了显示光学系统三维可视化的工具。这些工具还可用于检查元件
    发表于 01-06 08:53

    高倍金相自动测量显微镜无限远光学系统

    高倍金相自动测量显微镜无限远光学系统在无限远处形成图像,是通过在物镜与目镜之间的主镜筒中设置镜筒透镜,构建了一个能够形成中间图像的光学系统。并可以灵活添加各种辅助组件,丰富了显微镜的功能性和实用性。除了正确的使用高倍金相自动测量显微镜的镜物镜始终处于最佳工作状态,还需要联
    的头像 发表于 12-14 20:31 325次阅读
    高倍金相自动测量显微镜无限远<b class='flag-5'>光学系统</b>

    空间光调制器自适应激光光束整形

    设计 包含SLM、透镜以及反射镜的自适应激光系统整体仿真 杂散光&衍射效率的计算 VirtualLab中所选SLM的直接控制 光学系统容差 自适应光束整形设计用于 : 矩形
    发表于 12-12 10:33

    共聚焦激光显微镜的光学系统解析

    。 引言 共聚焦激光显微镜是一种广泛应用于生物医学、材料科学和纳米技术等领域的显微成像技术。它通过共聚焦技术,能够实现对样本的高分辨率成像,同时减少背景噪音,提高成像深度。本文将详细介绍共聚焦激光显微镜的光学系统,并分析其工作原理。 共聚焦激光显微镜的基本原
    的头像 发表于 10-30 09:40 752次阅读

    AR光学系统视觉相关重要参数

    AR(增强现实)技术是下一代前沿视觉显示技术。完美的AR显示需要光、机、电、声的无缝配合以呈现一场科技盛宴。光学无疑是显示技术中的核心,本文将从光学角度切入探索AR世界。
    的头像 发表于 08-26 10:17 875次阅读
    AR<b class='flag-5'>光学系统</b>视觉相关重要参数

    高质量激光光束光学系统中的空间滤波

    和精度至关重要。 VirtualLab Fusion独特的模拟技术使用户能够对滤波进行详细建模,从而评估对光学系统性能和特性的影响。 用于光束切趾的圆形锯齿光阑 光束切趾在高能激光器和光束传输系统
    发表于 08-14 11:54

    光学系统的像方基本参数结构示意图

    在成像光学领域中,可定义一种光学系统,光线通过该光学系统能够形成理想像即可忽略任何损耗与误差,定义该系统
    发表于 04-15 14:12 763次阅读
    <b class='flag-5'>光学系统</b>的像方基本参数结构示意图

    工业镜头光学系统的成像质量客观评价

    瑞利判断与波前图都是根据波像差的大小来判断镜头光学系统的成像质量,即实际成像波面与理想波面在出瞳处相切时,两波面之间的光程差就是波像差。
    发表于 04-09 14:30 650次阅读
    工业镜头<b class='flag-5'>光学系统</b>的成像质量客观评价

    光学系统大口径摄影镜头设计原理

    对于超大孔径和较大视场的光学系统,虽然采取了结构复杂化的措施,但轴外点宽光束的像差仍较大,致使垂轴像差特性曲线上下不对称。
    的头像 发表于 04-03 10:51 969次阅读
    <b class='flag-5'>光学系统</b>大口径摄影镜头设计原理

    如何检测光学系统的纵向色差

    在高精度成像中,对给定光学系统的焦距进行 测量是非常重要的。通常意义上的焦距是指某一 特定波长(一般为设计波长)的焦距数值,目前主 流的焦距检测设备的光源波长无法与被测光学系 统完全匹配,纵向色差会对焦距的测量结果产生 影响。
    发表于 03-18 10:09 897次阅读
    如何检测<b class='flag-5'>光学系统</b>的纵向色差

    知语云智能科技揭秘:光学干扰技术全景解读

    常见的光学干扰手段。 激光干扰技术 激光干扰技术利用激光的高亮度、高方向性等特点,对敌方光学系统进行干扰。它可以通过发射与敌方光学系统波长相同的激光,使其接收端饱和,从而干扰或破坏敌方光学
    发表于 03-01 17:26

    光学设计中的杂散光

    光学系统中的杂散光示意图(来自网络) 光学设计中的杂散光是从哪来的?在设计中“杂散光”概念的诠释和理解对于不同的光学设计者目前并不一致,导致设计者之间的交流受阻,在某种程度上阻碍了杂散光分析与抑制
    的头像 发表于 02-22 06:34 472次阅读
    <b class='flag-5'>光学</b>设计中的杂散光

    光学系统无热化技术的三个大类

    热化技术是指采用某种手段,对光学系统的温度效应进行补偿,保持像面不发生位移或者产生的位移很小。目前所采用的光学系统的无热化技术可分为三个大类。机械被动式无热化技术
    的头像 发表于 02-21 12:36 1143次阅读