0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探究对深度学习模型VAE的时序性解耦

电子工程师 来源:DeepBlue深兰科技 作者:DeepBlue深兰科技 2021-06-04 11:10 次阅读

现代深度学习架构一直被描述为一个黑匣子:被输入数据,并期望从中得到一些结果。然而,由于此类架构存在许多的复杂性,过程中发生的事情,通常难以解释和分析。这已发展成为整个社会未能广泛接受深度学习的主要原因之一,尤其是对于关键任务应用程序。

因此,“黑匣子”的解体已成为机器学习研究人员的一个重大开放问题,并且是该领域当前感兴趣的问题之一,这一研究领域通常被称为机器学习架构的“可解释性”。在本文中,我们将讨论可解释性研究中的一个重要主题,即解耦问题。

Disentangled

Sequential VAE

光的解耦(Ddisentangled)

我们举个常见的例子:在日常生活中,太阳光看起来是白色的,但是如果我们让阳光通过三棱镜,就会发现阳光分别折射出多种色彩。这说明白光其实是多种颜色混合的体现,而我们可以通过三棱镜把它分解成基本七种颜色,其中包括红、绿、蓝三原色。

我们继续聊聊白光:在广泛意义上说光是由RGB三种颜色组成的。这也就定义了光的解耦过程:光可以分离成R、G、B三种颜色,同时我们也可以用这三种颜色,进行不同程度的叠加,产生丰富而广泛的颜色。

计算机定义颜色时R、G、 B三种成分的取值范围是0-255,0表示没有刺激量,255表示刺激量达最大值。R、G、B均为255时就合成了白光,R、G、B均为0时就形成了黑色。在这个区间范围内,我们可以通过任意的数值组合构造出无数种不同的颜色,让我们的生活充满色彩。

白光和解耦又有什么关系呢?那关系就大了!我们下面简单聊一下一种深度学习模型——变分自编码器模型(VAE:variational autoencoder),然后用它来解释解耦。

什么是VAE?

什么是VAE呢?那要先从AE开始说起了。

AE(Autoencoder)

87c81b48-c4e0-11eb-9e57-12bb97331649.png

上图由两个部分组成,第一个部分是编码器(Encoder),第二部分是解码器(Decoder),图片经过编码器得到一个潜在的编码(code),编码再通过解码器还原输入的图片,因此得到的编码就是图片在一个潜在空间的表示。而编码器和解码器就是由神经网络组成的。图中例子就是希望能够生成一张一样的图片。

VAE (Variational Autoencoder)

变分编码器是自动编码器的升级版本,其结构跟自动编码器相似,也由编码器和解码器构成。在AE中,输入一个图片得到一个的编码(code),但这个编码是一个固定的编码,使得模型没有很好的泛化功能。所以VAE引入了一种新的方式有效解决了上述的问题,就是将编码问题变成一个分布问题,具体操作是在AE的基础上增加一个限制,迫使编码器得到的编码(code)能够粗略地遵循一个标准正态分布,这就是其与一般的自动编码器最大的不同。

这样我们生成一张新图片就很简单了,我们只需要给它一个标准正态分布的随机隐含向量,这样通过解码器就能够生成我们想要的图片,而不需要给它一张原始图片先进行编码。

87d5973c-c4e0-11eb-9e57-12bb97331649.png

VAE的演变增加了模型的泛化性,以上图VAE的过程为例,当输入的图片是猫时,通过猫的特征来生成新的图片,VAE的好处就在于当输入的图片不是完整的图片时(训练集外),它依旧可以还原成原来的样子。

在深度学习中,不管是什么样的模型,数据都很重要,而VAE的好处就在于 :

它可以通过编码和解码的过程,通过抽样,生成新的数据。这样对于机器学习就有了更多的数据支撑从而得到更好的模型效果。

VAE在中间层会得到一个编码(code),也就是一个语义层,我们可以通过对于这个语义的理解,从而达到图片的分类、变换的效果。

如果我们类比光的解耦(将光分离成R、G、B三种颜色),VAE(Variational Autoencoder)就可以理解成是深度学习框架的三棱镜。

这是为什么呢?我们先给一个浅显的技术介绍,然后再回来聊颜色分离。

VAE是一种深度学习框架,更具体来说,它是一种生成模型。生成模型的操作很简单:它可以读取数据(多为图片),抽取数据的特征,然后自动生成有这些特征的新数据。我们这里关心的是提取特征这个环节。大多生成模型的特征提取模式,便是经过所谓的“潜在变量”(latent variables)来编码提取到的特征。

这里的一个明显的问题便是:我们怎么判断正式数据里的某一个特征对应的是哪个语义变量?我们可以回到类比成颜色分离和生成的过程,将一种颜色先编码(encoder)成R,G,B,再通过解码(decoder)形成一种颜色。

Disentangled Sequential VAE

随着对VAE的研究,越来越多的研究重点就放在了如何在VAE的基础上做到disentangled的过程。以下简单介绍一下深兰科学院对于该项目的研究内容:对于时序的数据解耦出其数据的动态信息和静态信息,并理解静态信息和动态信息的语义,后续团队的目标也是基于当前的项目,进行这个主流方向的基础研究。

本项目采用的数据是Sprites,这是个具有时序性的数据。小精灵有着不同的颜色和动作,团队的任务就是通过这些小精灵的图片,解耦出小精灵的动态信息(小精灵的动作)和静态信息(小精灵的颜色)。通过深度学习来获得小精灵动静态信息的语义,并理解这语义从而生成新的小精灵。

如下图所示,通过深度学习得到小精灵的动态信息和静态信息,并改变他们的值的生成效果(上排是原始数据,下排是生成数据)。

1. 改变静态信息(颜色)

2.改变动态信息

对于VAE时序性解耦的工作可以更容易地说明神经网络的可解释性,这样的任务不仅可以对神经网络的基础研究作出贡献,还可以应用到很多人工智能的项目中,例如对图像视频的处理;动静的解耦可以实现换脸等效果;在自然语言处理中,可以改变声音的种类等。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 解码器
    +关注

    关注

    9

    文章

    1143

    浏览量

    40743
  • 数据
    +关注

    关注

    8

    文章

    7035

    浏览量

    89049
  • 计算机
    +关注

    关注

    19

    文章

    7494

    浏览量

    87982
  • Code
    +关注

    关注

    0

    文章

    69

    浏览量

    15395
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121178

原文标题:探究 | 对深度学习模型VAE的时序性解耦

文章出处:【微信号:kmdian,微信公众号:深兰科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    深度学习模型的鲁棒优化

    深度学习模型的鲁棒优化是一个复杂但至关重要的任务,它涉及多个方面的技术和策略。以下是一些关键的优化方法: 一、数据预处理与增强 数据清洗 :去除数据中的噪声和异常值,这是提高
    的头像 发表于 11-11 10:25 263次阅读

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二
    的头像 发表于 10-27 11:13 398次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习
    的头像 发表于 10-25 09:22 229次阅读

    AI大模型深度学习的关系

    人类的学习过程,实现对复杂数据的学习和识别。AI大模型则是指模型的参数数量巨大,需要庞大的计算资源来进行训练和推理。深度
    的头像 发表于 10-23 15:25 745次阅读

    FPGA做深度学习能走多远?

    的应用场景。 • 可重构:在深度学习高速迭代的情况下,FPGA 比一些专用芯片(如 ASIC)具有更强的灵活性。当深度学习算法或
    发表于 09-27 20:53

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    一些局限性。例如,模型可能无法完全理解文本中的深层含义和语境信息;同时,由于训练数据可能存在偏差和噪声,生成的答案也可能存在不准确或误导的情况。 总结以下,大语言模型通过深度
    发表于 08-02 11:03

    深度学习模型有哪些应用场景

    深度学习模型作为人工智能领域的重要分支,已经在多个应用场景中展现出其巨大的潜力和价值。这些应用不仅改变了我们的日常生活,还推动了科技进步和产业升级。以下将详细探讨深度
    的头像 发表于 07-16 18:25 1966次阅读

    深度学习模型量化方法

    深度学习模型量化是一种重要的模型轻量化技术,旨在通过减少网络参数的比特宽度来减小模型大小和加速推理过程,同时尽量保持
    的头像 发表于 07-15 11:01 497次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>模型</b>量化方法

    深度学习模型中的过拟合与正则化

    深度学习的广阔领域中,模型训练的核心目标之一是实现对未知数据的准确预测。然而,在实际应用中,我们经常会遇到一个问题——过拟合(Overfitting)。过拟合是指模型在训练数据上表现
    的头像 发表于 07-09 15:56 959次阅读

    深度学习中的模型权重

    深度学习这一充满无限可能的领域中,模型权重(Weights)作为其核心组成部分,扮演着至关重要的角色。它们不仅是模型
    的头像 发表于 07-04 11:49 1318次阅读

    深度学习的典型模型和训练过程

    深度学习作为人工智能领域的一个重要分支,近年来在图像识别、语音识别、自然语言处理等多个领域取得了显著进展。其核心在于通过构建复杂的神经网络模型,从大规模数据中自动学习并提取特征,进而实
    的头像 发表于 07-03 16:06 1484次阅读

    深度学习模型训练过程详解

    深度学习模型训练是一个复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练一个深度学习模型
    的头像 发表于 07-01 16:13 1279次阅读

    深度学习模型优化与调试方法

    深度学习模型在训练过程中,往往会遇到各种问题和挑战,如过拟合、欠拟合、梯度消失或爆炸等。因此,对深度学习
    的头像 发表于 07-01 11:41 826次阅读

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 625次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    目前主流的深度学习算法模型和应用案例

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。
    的头像 发表于 01-03 10:28 1961次阅读
    目前主流的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>算法<b class='flag-5'>模型</b>和应用案例