0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探索ARM CPU架构的美妙以及C语言编译器的奥秘

strongerHuang 来源:Mculover666 作者:Mculover666 2021-06-06 18:10 次阅读

笔者接触嵌入式领域软件开发以来,几乎用的都是 ARM Cortex M 内核系列的微控制器。感谢C语言编译器的存在,让我不用接触汇编即可进行开发,但是彷佛也错过了一些风景,没有领域到编译器之美和CPU之美,所以决定周末无聊的休息时间通过寻找资料、动手实验、得出结论的方法来探索 ARM CPU 架构的美妙,以及C语言编译器的奥秘。(因为我个人实在是不赞同学校中微机原理类课程的教学方法)。

ARM探索之旅 01 | 带你认识ARM Cortex-M阵营

ARM探索之旅 02 | ARM Cortex-M 用什么指令集?

一、浮点数的存储

浮点数按照 IEEE 754 标准存储在计算机中,ARM浮点环境是遵循「IEEE 754-1985」标准实现的。

IEEE 754 标准规定浮点数的存储格式有三个域

sign:符号位,0表示正数、1表示负数;

exponent:二进制小数的指数值编码;

fraction:二进制小数的有效值编码;

具体的编码规则过多,本文重点不在此,不再展开,感兴趣可以阅读我之前的文章:浮点数在计算机中的存储 —— IEEE 754标准[1](可点击阅读原文查看)。

二、浮点支持软件库fplib

1. fplib介绍

ARM Cortex-M处理器中计算浮点数的方式有软件和硬件两种。

对于不带 FPU 的处理器,ARM提供了一个「浮点支持软件库」用于计算浮点数:fplib。

fplib提供的 API 以__aeabi开头,比如:

__aeabi_fadd:计算两个float型浮点数(float占4个字节,32位)

__aeabi_dadd:计算两个double型浮点数(double占8个字节,64位)

__aeabi_f2d:float型转为double型

__aeabi_d2f:double型转为float型

除此之外,fplib库还提供取余、开方等非常多的浮点数操作函数,如有兴趣可以查阅文末我列出的参考文档[2]。

2. 测试代码与优化等级

编写如下测试代码:

float a = 5.625; float b = 5.625; float res_add, res_sub, res_mul, res_div; res_add = a + b; res_sub = a - b; res_mul = a * b; res_div = a / b; printf(“res_add = %f ”, res_add); printf(“res_sub = %f ”, res_sub); printf(“res_mul = %f ”, res_mul); printf(“res_div = %f ”, res_div);

使用这段测试代码,「编译器优化等级推荐设置为-O0」,否则聪明的编译器会直接将结果计算出来编译到程序中,我们就没法研究了。

3. armcc测试结果

这节我们验证是否ARM使用 fplib 库来计算浮点数,在设置中关闭FPU:

使用MDK编译之后,进入调试模式查看反汇编结果。

在反汇编中可以看到,变量a是float类型,所以编译器分配了一个寄存器用于存储值:

查看0x080031C4处的值,小端存储模式下(低位在低地址),变量a的值是0x40B40000,存储方式符合IEEE 754标准。

再来看看浮点数运算操作的反汇编结果,果然调用fplib库提供的函数完成浮点数的操作:这里还有一个有趣的小细节,在反汇编中可以看到「使用 %f 占位符打印浮点数时,printf是按照double型传参的」:

4. arm-none-eabi-gcc测试结果

使用STM32CubeMX生成makeifle工程,修改makeifle中的等级为-O0,设置为软件浮点计算:另外还需要注意,默认gcc编译时不支持printf打印浮点数,需要在 makefile 中手动加入以下链接选项:

LDFLAGS += -u _printf_float

编译完成之后进行反汇编(注意文件名):

arm-none-eabi-objdump -s -d build/usart1-fpu-test.elf 》 build/usart1-fpu-test.dis

同样,在反汇编文件中即可找到浮点计算代码:

三、使用 ARM FPU 加速浮点计算

1. ARM FPU的魅力

FPU(Floating Point Unit,浮点单元)是ARM内核中的硬件外设,用于硬件计算浮点数,要想使用FPU计算浮点数,需要程序和编译器配合。

在程序中使能/开启FPU硬件外设,「使 FPU 硬件可以正常工作」;

在编译器中设置使用FPU,编译器会将所有浮点计算的代码都编译为「使用FPU操作指令完成」。

目前Cortex-M4、Cortex-M7、Cortex-M33、Cortex-M35P、Cortex-M55处理器中都具备FPU硬件。

在上一节中我们使用fplib软件库来计算浮点数,但是fplib终归还是软件方式,每个计算函数的实现都是通过很多的指令去完成计算,并且最终的程序中还会把函数链接进可执行程序,导致程序体积变大。

「ARM FPU的魅力在于,浮点计算可以通过简单的FPU操作指令去完成,相比之下,不仅计算快,也不会增大程序体积。」

2. 如何使能FPU硬件

ARM Cortex - M4内核中将 FPU 作为协处理器设计的,所以通过设置协处理器访问控制(CPACR,Co-processor access control register)来控制是否使能FPU。

复位之后CP11=0、CP10=0,默认禁止访问FPU,因为这是Cortex-M内核的外设,寄存器定义CMSIS-Core中,所以可以直接通过下面这行代码设置CP11=1、CP10=1来允许访问FPU:

SCB-》CPACR = 0x00F00000; // Enable the floating point unit for full access

无论是STM32 HAL库还是标准库,在SystemInit()函数中已经存在使能代码,通过__FPU_PRESENT和__FPU_USED来控制:

/* FPU settings ------------------------------------------------------------*/ #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) SCB-》CPACR |= ((3UL 《《 10*2)|(3UL 《《 11*2)); /* set CP10 and CP11 Full Access */ #endif

并且,在头文件 stm32l431xx.h 中已经使能__FPU_PRESENT宏定义:__FPU_PRESENT宏定义是一直使能的,那么如何来控制FPU的使能呢?

别忘了还有一个宏定义__FPU_USED,这是留给编译器来控制的!

3. ARMCC编译器如何开启FPU

MDK编译器开启FPU的方法非常简单,如图:在MDK中使能FPU,一方面编译器会设置宏定义__FPU_USED == 1,不放心的话可以在任意位置添加下面的预处理代码,分别在使用/不使用的情况编译一下,查看编译器输出结果:

#if __FPU_USED == 1 #error “ok!” #endif

另一方面,编译器在编译的时候,会将所有的浮点运算都编译为使用FPU操作指令去完成

4. gcc编译器如何开启FPU

在Makefile中加入以下gcc编译设置项:

# fpu FPU = -mfpu=fpv4-sp-d16 # float-abi FLOAT-ABI = -mfloat-abi=hard

ABI是应用程序二进制接口(Application Binary Interface),-mfloat-abi用来指定使用哪种方式:

soft:使用CPU寄存器组+软件库(fplib)完成浮点操作;

softfp:使用CPU寄存组+FPU硬件+软件库完成浮点操作;

hard:使用FPU寄存器组+FPU硬件+软件库完成浮点操作;

mfpu选项用来指定FPU架构,具体值可以阅读我在文末给出的参考文档,本文所使用的值fpv4-sp-d16,意味着仅仅使能Armv7 FPv4-SP-D16 单精度浮点单元扩展。

同样,对之前的测试代码编译,查看反汇编结果,可以看到使用了浮点操作全部使用了FPU相关指令。

四、使用Julia测试FPU加速性能

1. 测试准备

需要准备一份裸机工程,具有屏幕打点显示功能和串口打印功能。

参考:STM32CubeMX_17 | 使用硬件SPI驱动TFT-LCD(ST7789)。

2. 移植Julia分形测试代码

Julia测试是通过计算几帧Julia分形的数据来测试单精度浮点运算的性能,测试代码参考正点原子,如下:

/* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #define ITERATION 128 //迭代次数 #define REAL_CONSTANT 0.285f //实部常量 #define IMG_CONSTANT 0.01f //虚部常量 //颜色表 uint16_t color_map[ITERATION]; //缩放因子列表 const uint16_t zoom_ratio[] = { 120, 110, 100, 150, 200, 275, 350, 450, 600, 800, 1000, 1200, 1500, 2000, 1500, 1200, 1000, 800, 600, 450, 350, 275, 200, 150, 100, 110, }; //初始化颜色表 //clut:颜色表指针 void InitCLUT(uint16_t * clut) { uint32_t i = 0x00; uint16_t red = 0, green = 0, blue = 0; for (i = 0;i 《 ITERATION; i++) { //产生 RGB 颜色值 red = (i*8*256/ITERATION) % 256;

green = (i*6*256/ITERATION) % 256; blue = (i*4*256 /ITERATION) % 256;

//将 RGB888,转换为 RGB565 red = red 》》 3; red = red 《《 11; green = green 》》 2; green = green 《《 5; blue = blue 》》 3; clut[i] = red + green + blue; } } //产生 Julia 分形图形 //size_x,size_y:屏幕 x,y 方向的尺寸 //offset_x,offset_y:屏幕 x,y 方向的偏移 //zoom:缩放因子 void GenerateJulia_fpu(uint16_t size_x,uint16_t size_y,uint16_t offset_x,uint16_t offset_y,uint16_t zoom) { uint8_t i; uint16_t x,y; float tmp1,tmp2; float num_real,num_img; float radius; for (y = 0; y 《 size_y; y++) { for (x = 0; x 《 size_x; x++) { num_real = y - offset_y; num_real = num_real / zoom; num_img = x-offset_x;

num_img = num_img / zoom; i = 0; radius = 0; while ((i 《 ITERATION-1) && (radius 《 4)) { tmp1 = num_real * num_real;

tmp2 = num_img * num_img; num_img = 2*num_real*num_img + IMG_CONSTANT; num_real = tmp1 - tmp2 + REAL_CONSTANT;

radius = tmp1 + tmp2; i++; } //绘制到屏幕 lcd_draw_color_point(x, y, color_map[i]); } } } /* USER CODE END 0 */

在main函数中创建一些需要的变量:

/* USER CODE BEGIN 1 */ uint8_t zoom_index = 0; uint32_t start_time = 0, end_time = 0; /* USER CODE END 1 */

调用初始化函数:

/* USER CODE BEGIN 2 */ printf(“Julia test by Mculover666 ”); lcd_init(); //初始化颜色表 InitCLUT(color_map); /* USER CODE END 2 */

调用测试函数:

/* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ start_time = HAL_GetTick(); GenerateJulia_fpu(240, 240, 120, 120, zoom_ratio[zoom_index]); end_time = HAL_GetTick(); printf(“diff time is %d ms ”, end_time - start_time); zoom_index++; if (zoom_index 》 sizeof(zoom_ratio)) { zoom_index = 0; } } /* USER CODE END 3 */

3. 测试结果

使用-O2优化等级,在不开 FPU 的情况下,「显示一帧平均需要11s左右」:程序大小情况:

d4847f56-c55a-11eb-9e57-12bb97331649.png

使用-O2优化等级,在开启 FPU 的情况下,「显示一帧平均需要4s左右」:程序大小情况:

d4ebf7da-c55a-11eb-9e57-12bb97331649.png

最后放上好看的Julia分形图:

原文标题:揭秘ARM FPU 加速浮点计算

文章出处:【微信公众号:strongerHuang】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • ARM
    ARM
    +关注

    关注

    134

    文章

    9099

    浏览量

    367747
  • 嵌入式
    +关注

    关注

    5083

    文章

    19133

    浏览量

    305619
  • C语言
    +关注

    关注

    180

    文章

    7605

    浏览量

    136970

原文标题:揭秘ARM FPU 加速浮点计算

文章出处:【微信号:strongerHuang,微信公众号:strongerHuang】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Triton编译器与GPU编程的结合应用

    Triton编译器简介 Triton编译器是一种针对并行计算优化的编译器,它能够自动将高级语言代码转换为针对特定硬件优化的低级代码。Triton编译
    的头像 发表于 12-25 09:13 231次阅读

    Triton编译器如何提升编程效率

    在现代软件开发中,编译器扮演着至关重要的角色。它们不仅将高级语言代码转换为机器可执行的代码,还通过各种优化技术提升程序的性能。Triton 编译器作为一种先进的编译器,通过多种方式提升
    的头像 发表于 12-25 09:12 219次阅读

    Triton编译器在高性能计算中的应用

    先进的编译技术,为高性能计算提供了强大的支持。 Triton编译器简介 Triton编译器是一种开源的编译器框架,旨在为异构计算环境提供高效的编译
    的头像 发表于 12-25 09:11 227次阅读

    Triton编译器的优化技巧

    在现代计算环境中,编译器的性能对于软件的运行效率至关重要。Triton 编译器作为一个先进的编译器框架,提供了一系列的优化技术,以确保生成的代码既高效又适应不同的硬件架构。 1. 指令
    的头像 发表于 12-25 09:09 213次阅读

    Triton编译器支持的编程语言

    Triton编译器支持的编程语言主要包括以下几种: 一、主要编程语言 Python :Triton编译器通过Python接口提供了对Triton语言
    的头像 发表于 12-24 17:33 360次阅读

    Triton编译器与其他编译器的比较

    的GPU编程框架,使开发者能够编写出接近手工优化的高性能GPU内核。 其他编译器 (如GCC、Clang、MSVC等): 定位:通用编译器,支持多种编程语言,广泛应用于各种软件开发场景。 目标:提供稳定、高效的
    的头像 发表于 12-24 17:25 373次阅读

    Triton编译器功能介绍 Triton编译器使用教程

    Triton 是一个开源的编译器前端,它支持多种编程语言,包括 CC++、Fortran 和 Ada。Triton 旨在提供一个可扩展和可定制的
    的头像 发表于 12-24 17:23 405次阅读

    ARM优化C/C++编译器 v20.2.0.LTS

    电子发烧友网站提供《ARM优化C/C++编译器 v20.2.0.LTS.pdf》资料免费下载
    发表于 11-07 10:46 0次下载
    <b class='flag-5'>ARM</b>优化<b class='flag-5'>C</b>/<b class='flag-5'>C</b>++<b class='flag-5'>编译器</b> v20.2.0.LTS

    TMS320C6000优化C/C++编译器v8.3.x

    电子发烧友网站提供《TMS320C6000优化C/C++编译器v8.3.x.pdf》资料免费下载
    发表于 11-01 09:35 0次下载
    TMS320<b class='flag-5'>C</b>6000优化<b class='flag-5'>C</b>/<b class='flag-5'>C</b>++<b class='flag-5'>编译器</b>v8.3.x

    C7000优化C/C++编译器

    电子发烧友网站提供《C7000优化C/C++编译器.pdf》资料免费下载
    发表于 10-30 09:45 0次下载
    <b class='flag-5'>C</b>7000优化<b class='flag-5'>C</b>/<b class='flag-5'>C</b>++<b class='flag-5'>编译器</b>

    AI编译器技术剖析

    随着人工智能技术的飞速发展,AI编译器作为一种新兴的编译技术逐渐进入人们的视野。AI编译器不仅具备传统编译器的功能,如将高级语言编写的源代码
    的头像 发表于 07-17 18:28 1656次阅读

    人工智能编译器与传统编译器的区别

    人工智能编译器(AI编译器)与传统编译器在多个方面存在显著的差异。这些差异主要体现在设计目标、功能特性、优化策略、适用范围以及技术复杂性等方面。以下是对两者区别的详细探讨,旨在全面解析
    的头像 发表于 07-17 18:19 1936次阅读

    SEGGER编译器优化和安全技术介绍 支持最新CC++语言

    SEGGER编译器是专门为ARM和RISC-V微控制设计的优化C/C++编译器。它建立在强大的
    的头像 发表于 06-04 15:31 1477次阅读
    SEGGER<b class='flag-5'>编译器</b>优化和安全技术介绍 支持最新<b class='flag-5'>C</b>和<b class='flag-5'>C</b>++<b class='flag-5'>语言</b>

    C语言:嵌入式开发中的关键编译器角色

    嵌入式程序开发跟硬件密切相关,需要使用C语言来读写底层寄存、存取数据、控制硬件等,C语言和硬件之间由
    发表于 04-26 14:53 637次阅读
    <b class='flag-5'>C</b><b class='flag-5'>语言</b>:嵌入式开发中的关键<b class='flag-5'>编译器</b>角色

    C语言#define的应用

    C/C++ 编程语言中,当程序被编译时,被发送到编译器编译器将程序转换为机器
    发表于 03-06 11:29 385次阅读
    <b class='flag-5'>C</b><b class='flag-5'>语言</b>#define的应用