0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用跨界模型Transformer来做物体检测!

新机器视觉 来源:迈微研习社 作者:迈微研习社 2021-06-10 16:04 次阅读

这是一个Facebook的目标检测Transformer (DETR)的完整指南。

介绍

DEtection TRansformer (DETR)是Facebook研究团队巧妙地利用了Transformer 架构开发的一个目标检测模型。在这篇文章中,我将通过分析DETR架构的内部工作方式来帮助提供一些关于它的直觉。

下面,我将解释一些结构,但是如果你只是想了解如何使用模型,可以直接跳到代码部分。

结构

DETR模型由一个预训练的CNN骨干(如ResNet)组成,它产生一组低维特征集。这些特征被格式化为一个特征集合并添加位置编码,输入一个由Transformer组成的编码器和解码器中,和原始的Transformer论文中描述的Encoder-Decoder的使用方式非常的类似。

解码器的输出然后被送入固定数量的预测头,这些预测头由预定义数量的前馈网络组成。每个预测头的输出都包含一个类预测和一个预测框。损失是通过计算二分匹配损失来计算的。

该模型做出了预定义数量的预测,并且每个预测都是并行计算的。

CNN主干

假设我们的输入图像,有三个输入通道。CNN backbone由一个(预训练过的)CNN(通常是ResNet)组成,我们用它来生成C个具有宽度W和高度H的低维特征(在实践中,我们设置C=2048, W=W₀/32和H=H₀/32)。

这留给我们的是C个二维特征,由于我们将把这些特征传递给一个transformer,每个特征必须允许编码器将每个特征处理为一个序列的方式重新格式化。这是通过将特征矩阵扁平化为H⋅W向量,然后将每个向量连接起来来实现的。

扁平化的卷积特征再加上空间位置编码,位置编码既可以学习,也可以预定义。

The Transformer

Transformer几乎与原始的编码器-解码器架构完全相同。不同之处在于,每个解码器层并行解码N个(预定义的数目)目标。该模型还学习了一组N个目标的查询,这些查询是(类似于编码器)学习出来的位置编码。

目标查询

下图描述了N=20个学习出来的目标查询(称为prediction slots)如何聚焦于一张图像的不同区域。

“我们观察到,在不同的操作模式下,每个slot 都会学习特定的区域和框大小。“ —— DETR的作者

理解目标查询的直观方法是想象每个目标查询都是一个人。每个人都可以通过注意力来查看图像的某个区域。一个目标查询总是会问图像中心是什么,另一个总是会问左下角是什么,以此类推。

使用PyTorch实现简单的DETR

import torch

import torch.nn as nn

from torchvision.models import resnet50

class SimpleDETR(nn.Module):

“”“

Minimal Example of the Detection Transformer model with learned positional embedding

”“”

def __init__(self, num_classes, hidden_dim, num_heads,

num_enc_layers, num_dec_layers):

super(SimpleDETR, self).__init__()

self.num_classes = num_classes

self.hidden_dim = hidden_dim

self.num_heads = num_heads

self.num_enc_layers = num_enc_layers

self.num_dec_layers = num_dec_layers

# CNN Backbone

self.backbone = nn.Sequential(

*list(resnet50(pretrained=True).children())[:-2])

self.conv = nn.Conv2d(2048, hidden_dim, 1)

# Transformer

self.transformer = nn.Transformer(hidden_dim, num_heads,

num_enc_layers, num_dec_layers)

# Prediction Heads

self.to_classes = nn.Linear(hidden_dim, num_classes+1)

self.to_bbox = nn.Linear(hidden_dim, 4)

# Positional Encodings

self.object_query = nn.Parameter(torch.rand(100, hidden_dim))

self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2)

self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))

def forward(self, X):

X = self.backbone(X)

h = self.conv(X)

H, W = h.shape[-2:]

pos_enc = torch.cat([

self.col_embed[:W].unsqueeze(0).repeat(H,1,1),

self.row_embed[:H].unsqueeze(1).repeat(1,W,1)],

dim=-1).flatten(0,1).unsqueeze(1)

h = self.transformer(pos_enc + h.flatten(2).permute(2,0,1),

self.object_query.unsqueeze(1))

class_pred = self.to_classes(h)

bbox_pred = self.to_bbox(h).sigmoid()

return class_pred, bbox_pred

二分匹配损失 (Optional)

让为预测的集合,其中是包括了预测类别(可以是空类别)和包围框的二元组,其中上划线表示框的中心点, 和表示框的宽和高。

设y为ground truth集合。假设y和ŷ之间的损失为L,每一个yᵢ和ŷᵢ之间的损失为Lᵢ。由于我们是在集合的层次上工作,损失L必须是排列不变的,这意味着无论我们如何排序预测,我们都将得到相同的损失。因此,我们想找到一个排列,它将预测的索引映射到ground truth目标的索引上。在数学上,我们求解:

计算的过程称为寻找最优的二元匹配。这可以用匈牙利算法找到。但为了找到最优匹配,我们需要实际定义一个损失函数,计算和之间的匹配成本。

回想一下,我们的预测包含一个边界框和一个类。现在让我们假设类预测实际上是一个类集合上的概率分布。那么第i个预测的总损失将是类预测产生的损失和边界框预测产生的损失之和。作者在http://arxiv.org/abs/1906.05909中将这种损失定义为边界框损失和类预测概率的差异:

其中,是的argmax,是是来自包围框的预测的损失,如果,则表示匹配损失为0。

框损失的计算为预测值与ground truth的L₁损失和的GIOU损失的线性组合。同样,如果你想象两个不相交的框,那么框的错误将不会提供任何有意义的上下文(我们可以从下面的框损失的定义中看到)。

其中,λᵢₒᵤ和是超参数。注意,这个和也是面积和距离产生的误差的组合。为什么会这样呢?

可以把上面的等式看作是与预测相关联的总损失,其中面积误差的重要性是λᵢₒᵤ,距离误差的重要性是。

现在我们来定义GIOU损失函数。定义如下:

由于我们从已知的已知类的数目来预测类,那么类预测就是一个分类问题,因此我们可以使用交叉熵损失来计算类预测误差。我们将损失函数定义为每N个预测损失的总和:

为目标检测使用DETR

在这里,你可以学习如何加载预训练的DETR模型,以便使用PyTorch进行目标检测。

加载模型

首先导入需要的模块。

# Import required modules

import torch

from torchvision import transforms as T import requests # for loading images from web

from PIL import Image # for viewing images

import matplotlib.pyplot as plt

下面的代码用ResNet50作为CNN骨干从torch hub加载预训练的模型。其他主干请参见DETRgithub:https://github.com/facebookresearch/detr

detr = torch.hub.load(‘facebookresearch/detr’,

‘detr_resnet50’,

pretrained=True)

加载一张图像

要从web加载图像,我们使用requests库:

url = ‘https://www.tempetourism.com/wp-content/uploads/Postino-Downtown-Tempe-2.jpg’ # Sample imageimage = Image.open(requests.get(url, stream=True).raw) plt.imshow(image)

plt.show()

设置目标检测的Pipeline

为了将图像输入到模型中,我们需要将PIL图像转换为张量,这是通过使用torchvision的transforms库来完成的。

transform = T.Compose([T.Resize(800),

T.ToTensor(),

T.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])])

上面的变换调整了图像的大小,将PIL图像进行转换,并用均值-标准差对图像进行归一化。其中[0.485,0.456,0.406]为各颜色通道的均值,[0.229,0.224,0.225]为各颜色通道的标准差。

我们装载的模型是预先在COCO Dataset上训练的,有91个类,还有一个表示空类(没有目标)的附加类。我们用下面的代码手动定义每个标签

CLASSES =

[‘N/A’, ‘Person’, ‘Bicycle’, ‘Car’, ‘Motorcycle’, ‘Airplane’, ‘Bus’, ‘Train’, ‘Truck’, ‘Boat’, ‘Traffic-Light’, ‘Fire-Hydrant’, ‘N/A’, ‘Stop-Sign’, ‘Parking Meter’, ‘Bench’, ‘Bird’, ‘Cat’, ‘Dog’, ‘Horse’, ‘Sheep’, ‘Cow’, ‘Elephant’, ‘Bear’, ‘Zebra’, ‘Giraffe’, ‘N/A’, ‘Backpack’, ‘Umbrella’, ‘N/A’, ‘N/A’, ‘Handbag’, ‘Tie’, ‘Suitcase’, ‘Frisbee’, ‘Skis’, ‘Snowboard’, ‘Sports-Ball’, ‘Kite’, ‘Baseball Bat’, ‘Baseball Glove’, ‘Skateboard’, ‘Surfboard’, ‘Tennis Racket’, ‘Bottle’, ‘N/A’, ‘Wine Glass’, ‘Cup’, ‘Fork’, ‘Knife’, ‘Spoon’, ‘Bowl’, ‘Banana’, ‘Apple’, ‘Sandwich’, ‘Orange’, ‘Broccoli’, ‘Carrot’, ‘Hot-Dog’, ‘Pizza’, ‘Donut’, ‘Cake’, ‘Chair’, ‘Couch’, ‘Potted Plant’, ‘Bed’, ‘N/A’, ‘Dining Table’, ‘N/A’,‘N/A’, ‘Toilet’, ‘N/A’, ‘TV’, ‘Laptop’, ‘Mouse’, ‘Remote’, ‘Keyboard’, ‘Cell-Phone’, ‘Microwave’, ‘Oven’, ‘Toaster’, ‘Sink’, ‘Refrigerator’, ‘N/A’, ‘Book’, ‘Clock’, ‘Vase’, ‘Scissors’, ‘Teddy-Bear’, ‘Hair-Dryer’, ‘Toothbrush’]

如果我们想输出不同颜色的边框,我们可以手动定义我们想要的RGB格式的颜色

COLORS = [

[0.000, 0.447, 0.741],

[0.850, 0.325, 0.098],

[0.929, 0.694, 0.125],

[0.494, 0.184, 0.556],

[0.466, 0.674, 0.188],

[0.301, 0.745, 0.933]

格式化输出

我们还需要重新格式化模型的输出。给定一个转换后的图像,模型将输出一个字典,包含100个预测类的概率和100个预测边框。

每个包围框的形式为(x, y, w, h),其中(x,y)为包围框的中心(包围框是单位正方形[0,1]×[0,1]), w, h为包围框的宽度和高度。因此,我们需要将边界框输出转换为初始和最终坐标,并重新缩放框以适应图像的实际大小。

下面的函数返回边界框端点:

# Get coordinates (x0, y0, x1, y0) from model output (x, y, w, h)def get_box_coords(boxes):

x, y, w, h = boxes.unbind(1)

x0, y0 = (x - 0.5 * w), (y - 0.5 * h)

x1, y1 = (x + 0.5 * w), (y + 0.5 * h)

box = [x0, y0, x1, y1]

return torch.stack(box, dim=1)

我们还需要缩放了框的大小。下面的函数为我们做了这些:

# Scale box from [0,1]x[0,1] to [0, width]x[0, height]def scale_boxes(output_box, width, height):

box_coords = get_box_coords(output_box)

scale_tensor = torch.Tensor(

[width, height, width, height]).to(

torch.cuda.current_device()) return box_coords * scale_tensor

现在我们需要一个函数来封装我们的目标检测pipeline。下面的detect函数为我们完成了这项工作。

# Object Detection Pipelinedef detect(im, model, transform):

device = torch.cuda.current_device()

width = im.size[0]

height = im.size[1]

# mean-std normalize the input image (batch-size: 1)

img = transform(im).unsqueeze(0)

img = img.to(device)

# demo model only support by default images with aspect ratio between 0.5 and 2 assert img.shape[-2] 《= 1600 and img.shape[-1] 《= 1600, # propagate through the model

outputs = model(img) # keep only predictions with 0.7+ confidence

probas = outputs[‘pred_logits’].softmax(-1)[0, :, :-1]

keep = probas.max(-1).values 》 0.85

# convert boxes from [0; 1] to image scales

bboxes_scaled = scale_boxes(outputs[‘pred_boxes’][0, keep], width, height) return probas[keep], bboxes_scaled

现在,我们需要做的是运行以下程序来获得我们想要的输出:

probs, bboxes = detect(image, detr, transform)

绘制结果

现在我们有了检测到的目标,我们可以使用一个简单的函数来可视化它们。

# Plot Predicted Bounding Boxesdef plot_results(pil_img, prob, boxes,labels=True):

plt.figure(figsize=(16,10))

plt.imshow(pil_img)

ax = plt.gca()

for prob, (x0, y0, x1, y1), color in zip(prob, boxes.tolist(), COLORS * 100): ax.add_patch(plt.Rectangle((x0, y0), x1 - x0, y1 - y0,

fill=False, color=color, linewidth=2))

cl = prob.argmax()

text = f‘{CLASSES[cl]}: {prob[cl]:0.2f}’

if labels:

ax.text(x0, y0, text, fontsize=15,

bbox=dict(facecolor=color, alpha=0.75))

plt.axis(‘off’)

plt.show()

现在可以可视化结果:

plot_results(image, probs, bboxes, labels=True)

Colab地址:

https://colab.research.google.com/drive/1W8-2FOdawjZl3bGIitLKgutFUyBMA84q#scrollTo=bm0eDi8lwt48&uniqifier=2

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 编码器
    +关注

    关注

    45

    文章

    3638

    浏览量

    134428
  • cnn
    cnn
    +关注

    关注

    3

    文章

    352

    浏览量

    22203
  • pytorch
    +关注

    关注

    2

    文章

    807

    浏览量

    13200

原文标题:跨界模型!使用Transformer来做物体检测

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    原来ESP32竟可《一“芯”两用》既做人体检测传感器也Wi-Fi数据传输

    今天将介绍ESP32如何"一芯两用",既做人体检测传感器也Wi-Fi数据传输模块;对于使用ESP32Wi-Fi数据通讯,相信玩ESP32的基本上都知道怎么玩了,但是
    的头像 发表于 12-18 18:12 252次阅读
    原来ESP32竟可《一“芯”两用》既做人<b class='flag-5'>体检测</b>传感器也<b class='flag-5'>做</b>Wi-Fi数据传输

    Transformer模型的具体应用

    如果想在 AI 领域引领一轮新浪潮,就需要使用到 Transformer
    的头像 发表于 11-20 09:28 411次阅读
    <b class='flag-5'>Transformer</b><b class='flag-5'>模型</b>的具体应用

    Transformer模型能够做什么

    尽管名为 Transformer,但它们不是电视银幕上的变形金刚,也不是电线杆上垃圾桶大小的变压器。
    的头像 发表于 11-20 09:27 284次阅读
    <b class='flag-5'>Transformer</b><b class='flag-5'>模型</b>能够做什么

    《DNK210使用指南 -CanMV版 V1.0》第四十一章 YOLO2物体检测实验

    有关maix.KPU模块的介绍,请见第39.1小节《maix.KPU模块介绍》。41.2 硬件设计41.2.1 例程功能1. 获取摄像头输出的图像,并送入KPU进行YOLO2的物体检测模型运算,后将运算
    发表于 11-14 09:22

    在目标检测中大物体的重要性

    导读实验表明,对大型物体赋予更大的权重可以提高所有尺寸物体检测分数,从而整体提升目标检测器的性能(在COCOval2017数据集上使用InternImage-T
    的头像 发表于 10-09 08:05 453次阅读
    在目标<b class='flag-5'>检测</b>中大<b class='flag-5'>物体</b>的重要性

    Transformer语言模型简介与实现过程

    在自然语言处理(NLP)领域,Transformer模型以其卓越的性能和广泛的应用前景,成为了近年来最引人注目的技术之一。Transformer模型由谷歌在2017年提出,并首次应用于
    的头像 发表于 07-10 11:48 1627次阅读

    使用PyTorch搭建Transformer模型

    Transformer模型自其问世以来,在自然语言处理(NLP)领域取得了巨大的成功,并成为了许多先进模型(如BERT、GPT等)的基础。本文将深入解读如何使用PyTorch框架搭建Trans
    的头像 发表于 07-02 11:41 1598次阅读

    【大语言模型:原理与工程实践】探索《大语言模型原理与工程实践》

    处理中预训练架构Transformer,以及这些技术在现实世界中的如何应用。通过具体案例的分析,作者展示了大语言模型在解决实际问题中的强大能力,同时也指出了当前技术面临的挑战和局限性。书中对大语言模型
    发表于 04-30 15:35

    纵观全局:YOLO助力实时物体检测原理及代码

    YOLO 流程的最后一步是将边界框预测与类别概率相结合,以提供完整的检测输出。每个边界框的置信度分数由类别概率调整,确保检测既反映边界框的准确性,又反映模型对对象类别的置信度。
    的头像 发表于 03-30 14:43 2395次阅读

    基于Transformer模型的压缩方法

    基于Transformer架构的大型模型在人工智能领域中发挥着日益重要的作用,特别是在自然语言处理(NLP)和计算机视觉(CV)领域。
    的头像 发表于 02-22 16:27 648次阅读
    基于<b class='flag-5'>Transformer</b><b class='flag-5'>模型</b>的压缩方法

    一文详解Transformer神经网络模型

    Transformer模型在强化学习领域的应用主要是应用于策略学习和值函数近似。强化学习是指让机器在与环境互动的过程中,通过试错学习最优的行为策略。
    发表于 02-20 09:55 1.4w次阅读
    一文详解<b class='flag-5'>Transformer</b>神经网络<b class='flag-5'>模型</b>

    红外气体检测仪的工作原理 红外气体检测仪的使用方法

    红外气体检测仪是一种常用的气体检测装置,通过测量目标气体在红外光谱范围内的吸收特性实现气体的检测。红外气体检测仪具有高精度、快速响应、稳定
    的头像 发表于 02-01 16:52 2181次阅读

    体检测仪手持终端定制_便携式多种气体检测

    体检测仪手持终端定制_便携式多种气体检测仪|气体检测仪方案。手持气体检测仪终端在工业施工等领域具有重要的作用。该仪器可以有效地检测到可燃气
    的头像 发表于 01-23 19:44 1014次阅读
    气<b class='flag-5'>体检测</b>仪手持终端定制_便携式多种气<b class='flag-5'>体检测</b>仪

    实现稳定物体检测所需的光电传感器选择方法和使用方法

    使用反射型传感器时,应用上的各种要素将会影响光电传感器的物体检测。尤其对于黑色物体、光泽物体及透明物体等,使用传统光电传感器难以实现稳定的检测
    的头像 发表于 01-13 08:23 821次阅读
    实现稳定<b class='flag-5'>物体检测</b>所需的光电传感器选择方法和使用方法

    大语言模型背后的Transformer,与CNN和RNN有何不同

      电子发烧友网报道(文/李弯弯)近年来,随着大语言模型的不断出圈,Transformer这一概念也走进了大众视野。Transformer是一种非常流行的深度学习模型,最早于2017年
    的头像 发表于 12-25 08:36 4036次阅读
    大语言<b class='flag-5'>模型</b>背后的<b class='flag-5'>Transformer</b>,与CNN和RNN有何不同