0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

解读目标检测中的框位置优化

新机器视觉 来源:华为云社区 作者:卖猪肉的阿漆 2021-06-21 17:40 次阅读

目标检测已经有了长足的发展,总体来说根据阶段个数,可以划分为Two-stage(Faster RCNN)、one-stage(SSD) 或者E2E(DETR)。根据是否基于anchor先验,可以划分为anchor-based(Faster RCNN)、anchor-free(CornerNet)的方法。

本文主要从目标框位置优化的角度来介绍目标检测领域的相关工作。框位置优化主要可以分为以下几个方面

By XYWH,这是指通过优化与ground truth的中心点坐标值、宽和高的值来实现目标框位置的优化

By keypoint,这是指通过优化关键点的方式来找到目标框的位置

By LRBT,这是指通过优化与ground truth 四条边之间的距离的方式来实现目标框位置的优化

By IoU,这是指通过最大化与GT计算得到的IoU来优化目标框的位置

uncertainty,解决目标检测框真值的边界不确定性

01

Optimize by XYWH

定义

优化目标为预测bbox的中心点坐标(x,y)和宽高(width, height)与对应真值的差距尽可能的小。接下来我们以Faster RCNN为例介绍该方法 。

思路

基于Anchor的先验,我们可以得知每个proposal的大概位置。考虑到利用Anchor的先验信息,作者使得预测框到anchor的距离和与子匹配的GT框到anchor的距离尽可能的相似。距离:XYWH的差值。

匹配方法

1、 代表 和 的IoU值; 大于指定阈值,代表i和j之间具有匹配关系

2、 对应最大IoU的 ;如第一步j没有得到任何匹配,则在此步,i和j具备匹配关系

优化公式

768d47ce-d15e-11eb-9e57-12bb97331649.png

76a8448e-d15e-11eb-9e57-12bb97331649.png

上述是Faster RCNN的优化目标函数,我们的目标就是让 尽可能的逼近 ,之间的优化函数 可以选择L2,or L1 作者这里使用了Smooth L1

Q&A

为什么是SmoothL1?

A: smooth L1 在 x 较小时,对 x 的梯度也会变小,而在 x 很大时,对 x 的梯度的绝对值达到上限 1,也不会太大以至于破坏网络参数。smooth L1 可以避开 L1 和 L2 损失的缺陷。

76c4ef8a-d15e-11eb-9e57-12bb97331649.png

为什么要除 ?

A: 消除不同anchor大小带来的影响,相当于归一化为什么w和h的优化要以log的形式进行?

A: target(H和W)是学习一个放缩的尺度,因此尺度值需要大于0,因此需要使用exp,对应的这里为log函数

76d549de-d15e-11eb-9e57-12bb97331649.png

02

Optimize by Keypoint

定义

优化目标为找到物体的两个关键点:左上点和右下点。核心为一个semantic segmentation问题。

接下来我们以Corner Net为例介绍该方法 。

思路

不同于基于Anchor的方法,本方法需要先识别关键点在图中的位置。由于在pooling过程中会引入左边的误差,所以需要再针对每个关键点预测一个offset。

Q&A

如何训练和预测关键点?一个点一个pixel

A:作者使用2D Gaussian来生成,如下图所示,针对每个pixel,生成一个半径大小为r的圆形Gaussian分布。半径r的大小是自适应的。

若一个pixel对应了多个Gaussian分布的值,选择最大的。如何根据top-left和bottom-right关键点两两组合形成最终的bbox?

A:作者提出针对每个keypoint 预测一个embedded vector,当top_left和bottom_left的embedded vector相似度大于一定阈值的时候则认为他们是描述的同一个bbox。则形成一个bboxkeypoint往往落在物体的外部,对应位置的特征可能不能很好表征物体,会增加识别关键点的难度。

A:作者提出了CornerPooling

优化公式

综上所述,在该方式中,我们需要以下三个优化目标

1、关键点的分类,可以看成一个语义分割任务,作者采用了focal loss的变种,如下图所示

77a98906-d15e-11eb-9e57-12bb97331649.png

2、每个关键点的offset预测,每个关键点offset的真值如下式所示。作者采用smooth l1去优化

77b2bc2e-d15e-11eb-9e57-12bb97331649.png

3、每个关键点的embedded vector预测,作者使用下式来优化embedded vector。让属于同一个物体的vector相似,不属于同一个物体的不相似

77be4530-d15e-11eb-9e57-12bb97331649.png

77c736d6-d15e-11eb-9e57-12bb97331649.png

整体训练&推理流程

03

Optimize by LRBT上述基于关键点回归的方法有几个缺点

1、容易产生ghost bbox,这是由于tl br的embedded 相似度的确较高产生的

2、后处理的时候,若关键点较多,复杂度较高。为K^2的复杂度。

为了解决该问题,作者提出了基于LRBT的优化方式

定义

优化目标为物体的“中心点”距离四条边的距离

接下来我们以FCOS为例介绍该方法 。

思路

在feature map上找到每个“中心点”,针对每个中心点预测和他对应的框的四个值。

Q&A

1、如何定义“中心点”

A:我们需要找到特征图上每个location(pixel)和gt_bbox的匹配关系,然后将匹配到的gt_bbox作为真值。

匹配关系:

- location落在某个gt_bbox内部,这里的落在内部可以直接的理解为落在内部,也可以替换成其他规则。例如真实中心的某个范围。

- 为了加速收敛,l、r、t、b应该在某一个范围内,如果不在这个范围内,就以为着应该由其他location来优化。例如,都应该在scale_factor的范围内2、如何解决一个物体框可能包括了多个“中心点”

可以支持这种1对多的关系,一个物体框有多个中心点负责预测,后续通过NMS消除。

但是每个中心点的权重作者认为是不一样的,因为距离物体实际中心近的中心点其难度较低,应该就越准确,所有在NMS的时候权重应该高。所以作者多了一个branch来预测centerness,即用于评估每个中心点的难易程度。

7882572c-d15e-11eb-9e57-12bb97331649.png

3、如何解决一个中心点可能落在多个物体框内部

作者选择面积最小的bbox作为优化目标,其实也可以优化多个?

04

Optimize by IoU上述基本都是基于距离的回归,但是我们最终的评价指标是IoU,所以我们优化的目标和我们最终评价的指标之间还存在一些差异。在下面的case中,第一行所有情况的L2loss都是一样的,但是IoU和GIoU是存在一定差异的。在第二行中,L1 Loss都是一样的,但是IoU 和 GIoU 也是不一样的。

为了解决上述的差异,作者提出了使用IoU作为我们的优化目标

定义

优化目标为使得预测框和真值框IoU最大,使用IoU 作为损失函数主要有以下两个优势1. 优化目标和评价指标存在差异,Ln(L2, L1)范式优化和IoU优化并不完全等价,如上图所示。2. IoU对目标物体的scale不敏感。但是直接使用IoU Loss也存在如下两个问题1. IoU值容易为0,且始终无法优化。2. IoU无法辨识不同方式的对齐,比如方向不一致。为了解决上述问题,作者提出了GIoU General IoU Loss

GIoU

定义公式如下所示,C是包含A和B的最小box。当IoU(A, B)为0的时候,优化目标转化为让C与AUB之间的空隙尽可能小。即就是A和B尽可能靠近。

791ba940-d15e-11eb-9e57-12bb97331649.png

A = np.random.random([N, 4])B = np.random.random([N, 4])C = np.zero_like(A)C[:, :2] = np.min(A[:, :2], B[:, :2])C[:, 2:] = np.max(A[:, 2:], B[:, 2:])

实验结果如下所示

DIoU

Motivation

Distance IoU Loss 主要是为了解决如下两个问题

GIoU倾向得到一个较大的bbox

GIoU 区分两个对象之间的对齐方式比较间接,仅通过引入C的方式来反应重叠的方式,不够直接。如下图所示。第二幅图展示来当GIoU一样的情况下,DIoU是不一致的(前提是,中心点重合的情况下认为拟合的最好)。

Contributions

提出了基于IoU Loss的一般性范式,这是我认为最大的贡献

提出了DIoU Loss,在IoU loss的基础上将central之间的距离作为惩罚项

在各个数据集和detector上都取得了不错的效果

Detail

范式:作为认为IoU loss应该优化的目标包括三个方面

两个框之间的重合度

中心点之间的距离

长宽比的相似性

作者基于上述的1&&2,提出了DIoU Loss,结合1&&2&&3提出了CIoU Loss(C is complete)

DIoU:定义如下所示,其中关键中心点之间距离的惩罚项的分子代表两个框中心点之间的欧式距离。分母是GIoU中矩阵C的对角线变长。分母起到了归一化的作用。

79500c62-d15e-11eb-9e57-12bb97331649.png

CIoU的定义如下所示,它在DIoU的基础上增加了对长宽比的惩罚项

795ab9dc-d15e-11eb-9e57-12bb97331649.png

05

Optimize by uncertainty

Motivation

不一致性

训练和测试两个阶段的,如上图所示,训练的时候单独优化classification score和IoU score,测试的时候将其相乘,然后会导致训练和测试的时候不一致。

测试的时候,进入NMS的是classification score乘IoU score,就会存在一种情况classification score较低,但是IoU score较高,然后使得负样本没有被过滤。这是因为IoU score并没有对负样本做优化,所有负样本的IoU score并不受控制,如下图所示。

Localization Quality Estimation (LQE) 是许多one-stage或者anchor-free方法改善效果的途径。

但是上述的方法会带来一定的不一致性1,它主要包括以下两点

Contribution1为了解决上述的问题,作者提出使用Joint的方式来联合优化classification score和IoU score。即就是用同一个prediction值即代表classification score又代表IoU score

不灵活性

目前目标检测的标准框有时候会存在标注的不确定性(或噪声)。而目前常用的bbox优化方式是优化Dirac分布(具体什么是Dirac分布后续会介绍)。

但是Dirac分布过于固定,不能解决uncertain的问题,因此有人提出了Gaussian 分布。

但是作者认为Gaussian分布过于理想,不能适应于复杂的现实情况。

Contribution2因此,作者提出了不依赖于任何先验的潜在分布优化(underlying distribution)

Method

Quality Focal Loss

在上一节,我们介绍了作者使用同一个prediction score来同时表示classification score和IoU score,那么优化该值的时候真值应该是什么呢?作者选择IoU值作为优化的真值,由于IoU是一个[0,1]之间的连续值。而传统的focal loss优化的目标是{0, 1}这样的离散值。因此该loss更加泛化一点(general)

Quality Focal Loss就是上述的更加泛化的FocalLoss,其定义如下所示

7a3e576e-d15e-11eb-9e57-12bb97331649.png

上述公式的后部分是展开形式的交叉熵,系数是adaptive的,当预测是和真值接近的时候,系数小,当远的时候系数大。

Distribution Focal Loss

在本节我们主要介绍以下何为Distribution,以及我们的Distribution Focal Loss。

先看为什么是Distribution?传统的BBox regression即就是直接优化两个值,让pred_w接近真值的w。

换个角度看,假设我们预测的值为pred_w, 我们直接优化pred_w接近w,那么我们就相当于让pred_w出现的概率是1.0。这即就是Dirac Distribution。

也就是说我们最终的预测值是对所有y可能出现的值计算积分。也就如下公式所示。

7aaf0626-d15e-11eb-9e57-12bb97331649.png

接下来在看我们的Distribution Focal Loss, 有上式可知,上式是比Dirac更加泛化的形式。因此本文用上式来计算预测的y^。预测y^之前我们需要先清楚两点

连续值的积分是不好实现的,我们可以用离散值的求和来代替

我们需要确定预测值的范围。

有了上述两个条件,我们可以得到pred^的计算公式如下所示。

7aba9cac-d15e-11eb-9e57-12bb97331649.png

得到上述的y的预测值后,我们如何去优化呢?因为我们知道y^是接近y的,因此我们需要让int(y)和int(y)+1的prob最大。因此就可以对应下面的公式。

7acef2ec-d15e-11eb-9e57-12bb97331649.png

Discussion

GIoU 是否必须?

根据总的Loss定义,我们发现GIoU貌似不是必须,因为通过

distribution focal loss也可以起到bbox优化的目的。因此我们做了对比实验,发现取消GIoU loss会带来小幅度的指标下降。

别的应用场景

数据分类(带有噪声)。针对每个类,我们将其拆分成N份(0., 0.1, 0.2, …, 1.0),分别预测每一份的概率,然后求和,即为最终该类别的概率。

distribution的意义

分布越陡峭,证明越确定,否则越不确定。

本文分享自华为云社区《目标检测中的框位置优化总结》

原文作者:卖猪肉的阿漆 侵删

地址:https://bbs.huaweicloud.com/blogs/263436

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SSD
    SSD
    +关注

    关注

    21

    文章

    2865

    浏览量

    117516
  • 目标检测
    +关注

    关注

    0

    文章

    209

    浏览量

    15632
  • GT
    GT
    +关注

    关注

    0

    文章

    15

    浏览量

    24664

原文标题:总结 | 目标检测中的框位置优化

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Littrow结构光栅系统的配置与优化

    和光栅周期自动调整光栅的方向和探测器的方向和位置,来确保Littrow条件满足。在第二个例子,我们讨论了在Littrow配置下使用光栅的优化目标是设计光栅结构,使其偏振效应最小化。
    发表于 12-25 15:35

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    分类任务是识别图像主体内容的是什么?的问题,那么目标检测则是进一步解答在哪里? 目标检测不仅需要识别出图像或视频流
    发表于 12-19 14:33

    3D案例 3D线激光轮廓测量仪手机检测,为手机质量上把锁

    异常复杂,也使得许多测量工具无法满足检测标准。随着手机市场的日益成熟和竞争的加剧,企业越来越重视保持手机品质的高标准,其手机平面度和部件位置度的要求也越来越高。 光子精密的3D线激
    的头像 发表于 11-04 09:12 182次阅读
    3D案例 3D线激光轮廓测量仪手机<b class='flag-5'>中</b><b class='flag-5'>框</b><b class='flag-5'>检测</b>,为手机质量上把锁

    游戏、AR和VR控制器位置检测

    电子发烧友网站提供《游戏、AR和VR控制器位置检测.pdf》资料免费下载
    发表于 09-05 11:05 0次下载
    游戏、AR和VR控制器<b class='flag-5'>中</b>的<b class='flag-5'>位置</b><b class='flag-5'>检测</b>

    电动自行车应用位置检测

    电子发烧友网站提供《电动自行车应用位置检测.pdf》资料免费下载
    发表于 09-03 11:50 1次下载
    电动自行车应用<b class='flag-5'>中</b>的<b class='flag-5'>位置</b><b class='flag-5'>检测</b>

    开关电源电流检测电阻在什么位置

    ,与负载并联。在实际应用,电流检测电阻的位置可能会有所不同,但基本原理和作用是相同的。 位置选择原则 在选择电流检测电阻的
    的头像 发表于 08-02 09:56 838次阅读

    目标检测与图像识别的区别在哪

    检测(Object Detection)是指在图像或视频识别并定位感兴趣的目标,通常包括目标的类别和位置
    的头像 发表于 07-17 09:51 969次阅读

    目标检测与识别技术有哪些

    视频识别并定位感兴趣的目标,通常包括目标的类别和位置信息。目标识别(Object Recognition)是指对
    的头像 发表于 07-17 09:40 637次阅读

    目标检测与识别技术的关系是什么

    任务是在图像或视频快速准确地定位出感兴趣的目标,并给出目标位置信息。目标检测技术通常包括候选
    的头像 发表于 07-17 09:38 704次阅读

    目标检测识别主要应用于哪些方面

    目标检测识别是计算机视觉领域的一个重要研究方向,它主要关注于从图像或视频识别和定位目标物体。随着计算机视觉技术的不断发展,目标
    的头像 发表于 07-17 09:34 1104次阅读

    慧视小目标识别算法 解决目标检测的老大难问题

    随着深度学习和人工智能技术的兴起与技术成熟,一大批如FasterR-CNN、RetinaNet、YOLO等可以在工业界使用的目标检测算法已逐步成熟并进入实际应用,大多数场景下的目标检测
    的头像 发表于 07-17 08:29 522次阅读
    慧视小<b class='flag-5'>目标</b>识别算法   解决<b class='flag-5'>目标</b><b class='flag-5'>检测</b><b class='flag-5'>中</b>的老大难问题

    图像检测和图像识别的原理、方法及应用场景

    目标物体的过程。它的目标是确定图像是否存在特定的物体,并在图像中找到这些物体的位置,通常以矩形的形式表示。 1.2 图像识别 图像识别
    的头像 发表于 07-16 11:19 4456次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得
    的头像 发表于 07-04 17:25 942次阅读

    对象检测边界损失函数–从IOU到ProbIOU介绍

    目标检测损失函数的选择在目标检测问题建模至关重要。通常,目标
    的头像 发表于 01-24 10:50 2935次阅读
    对象<b class='flag-5'>检测</b>边界<b class='flag-5'>框</b>损失函数–从IOU到ProbIOU介绍

    PCB技术指南之板绘制和布局怎么处理?

     画一个大致方框可入器件封装——设置原点{ Edit ——Origin——Set}——放置在的左下角顶点位置——确定好所需要的的大小——Design——Board Shape——
    发表于 01-10 15:24 1078次阅读