0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

特斯拉的图像识别原理是什么?

深圳市汽车电子行业协会 来源:阿宝1990 作者:阿宝1990 2021-06-26 14:04 次阅读

特斯拉利用8个摄像头来识别现实世界中的物体。摄像头获取的图像包括行人、其他车辆、动物或障碍物,这不仅对特斯拉车辆驾驶员的安全很重要,对其他人也很重要。专利称,重要的是,摄像头能够及时准确地识别这些物体。

785551ea-d5b5-11eb-9e57-12bb97331649.png

特斯拉专利框

特斯拉专利演示

算法的代码层面来说,特斯拉把它们的深度学习网络称为HydraNet。其中,基础算法代码是共享的,整个HydraNet包含48个不同的神经网络,通过这48个神经网络,就能输出1000个不同的预测张量。理论上来说,特斯拉的这个超级网络,能同时检测1000种物体。完成这些运算并不简单,特斯拉已经耗费了7万个GPU小时进行深度学习模型训练。

虽然工作量很大,但由于大部分工作由机器承担,特斯拉的人工智能团队仅由几十人组成,与其他自动驾驶公司数百人甚至数千人的规模相比,确实规模不大。

完成2D的图像还不算牛掰的,毕竟云端有超级计算机可以去训练,本地的芯片也是自己开发的,可以很好的匹配算法,特斯拉真正牛掰的地方,通过视觉完成3D的深度信息,并可以通过视觉建立高精度地图,完成一些底下停车场的附件驾驶场景。

特斯拉全车共配备了8个摄像头,一个毫米波雷达和12个超声波雷达,监测外部环境,向自动驾驶电脑实时传送信息。

特斯拉车外传感器

简单来看,特斯拉的摄像头、毫米波雷达、超声波雷达以及惯性测量单元记录下当前车辆所处的环境数据,并将数据发送给特斯拉的自动驾驶电脑。自动驾驶电脑在进行算法的计算之后,将速度和方向信息传递给转向舵以及加速、制动踏板,实现对车辆的控制。

不过,在日常行驶过程中,摄像头作为传感器捕捉的内容都是二维图像,并没有深度信息。

也就是说,虽然二维图像已经可以区分公路和路旁的人行道,但并不知道现在车辆距离“马路牙子”还有多远。由于缺失这样一个重要信息,自动驾驶的运算可能并不准确,操作可能出错。因此,捕捉或者建立一个三维的图景很有必要。

特斯拉使用三目相机的,它可以通过比较两个摄像头图像的差异判断物体的远近,获得物体的深度信息。通过中央处理器对输入图像进行感知、分割、检测、跟踪等操作,输出给导航网络端进行语义建图及匹配定位,同时通过目标识别形成相应的ADAS系统目标属性。

特斯拉还有更厉害的地方,那就是算法可以预测流媒体视频中每一个像素的深度信息。也就是说,只要算法足够好,流媒体视频更加清晰,特斯拉的视觉传感器所捕捉的深度信息甚至可以超过激光雷达。

在实际的自动驾驶应用中,泊车入位和智能召唤两个使用场景下就能充分利用这套算法。在停车场行驶时,车辆之间的距离很小,即使是驾驶员驾驶,稍不留神也很容易出现刮蹭事故。对于机器来说,停车场场景的行驶更加困难。在预测到深度信息之后,车辆可以在超声波雷达的辅助之下,快速完成对周围环境的识别,车辆泊车就会更加顺利。

在完成深度信息的预测之后,这部分信息会显示在车机上,同时也会直接参与控制转向、加速、制动等驾驶动作。不过,转向、加速、制动这些驾驶策略没有固定的规则,有一定灵活性。因此,自动驾驶的驾驶策略没有最佳,只有更好。

怎么提高神经网络的算法效率:

为什么这么多厂家只有百度敢挑战视觉为主的辅助驾驶方案,不使用激光雷达,其中很大一个原因就是神经网络算法相当耗费芯片算力和内存资源,本地端的芯片要算力足够强大,对于神经网络的算法要有优化。

对于神经网络来说,其实很多的连接并不是一定要存在的,也就是说我去掉一些连接,可能压缩后的网络精度相比压缩之前并没有太大的变化。基于这样的理念,很多剪枝的方案也被提了出来,也确实从压缩的角度带来了很大效果提升。

需要特别提出的是,大家从图中可以看到,深度学习神经网络包括卷积层和全连接层两大块,剪枝对全连接层的压缩效率是最大的。下面柱状图的蓝色部分就是压缩之后的系数占比,从中可以看到剪枝对全连接层的压缩是最大的,而对卷积层的压缩效果相比全连接层则差了很多。

所以这也是为什么,在语音的加速上很容易用到剪枝的一些方案,但是在机器视觉等需要大量卷积层的应用中剪枝效果并不理想。

对于整个Deep Learning网络来说,每个权重系数是不是一定要浮点的,定点是否就能满足?定点是不是一定要32位的?很多人提出8位甚至1位的定点系数也能达到很不错的效果,这样的话从系数压缩来看就会有非常大的效果。从下面三张人脸识别的红点和绿点的对比,就可以看到其实8位定点系数在很多情况下已经非常适用了,和32位定点系数相比并没有太大的变化。所以,从这个角度来说,权重系数的压缩也会带来网络模型的压缩,从而带来计算的加速。

这些都需要非常资深的软件算法团队去优化,同时需要懂得底层芯片的资源情况,而百度在人工算法这方面非常具有优势,所以有勇气去挑战视觉为主的自动驾驶 Apollo Lite方案。

百度表示,摄像头是相对成熟的传感器,除具备轻巧低成本和符合车规的优势外,高分辨率高帧率(成像频率)的成像技术发展趋势意味着图像内蕴含的环境信息更丰富,同时视频数据也和人眼感知的真实世界最为相似,但和三维点云数据相比,二维图像中的信息更难挖掘,需要设计更强大的算法、大量数据的积累和更长期的研发投入。

责任编辑:lq6

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 摄像头
    +关注

    关注

    59

    文章

    4810

    浏览量

    95450
  • 特斯拉
    +关注

    关注

    66

    文章

    6293

    浏览量

    126466

原文标题:【行业资讯】自动驾驶传感器之摄像头(十二)特斯拉图像识别原理阐述

文章出处:【微信号:qidianxiehui,微信公众号:深圳市汽车电子行业协会】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI图像识别摄像机

    随着科技的迅猛发展,人工智能(AI)在各个领域的应用越来越广泛,其中图像识别技术尤为引人注目。AI图像识别摄像机作为这一技术的重要应用之一,正在逐步改变我们的生活和工作方式。什么是AI图像识别摄像机
    的头像 发表于 11-08 10:38 163次阅读
    AI<b class='flag-5'>图像识别</b>摄像机

    图像检测和图像识别的原理、方法及应用场景

    图像检测和图像识别是计算机视觉领域的两个重要概念,它们在许多应用场景中发挥着关键作用。 1. 定义 1.1 图像检测 图像检测(Object Detection)是指在
    的头像 发表于 07-16 11:19 3301次阅读

    图像识别算法都有哪些方法

    图像识别算法是计算机视觉领域的核心任务之一,它涉及到从图像中提取特征并进行分类、识别和分析的过程。随着深度学习技术的不断发展,图像识别算法已经取得了显著的进展。本文将介绍
    的头像 发表于 07-16 11:14 5142次阅读

    图像识别算法的提升有哪些

    引言 图像识别是计算机视觉领域的核心任务之一,旨在使计算机能够自动地识别和理解图像中的内容。随着计算机硬件的发展和深度学习技术的突破,图像识别算法的性能得到了显著提升。本文将介绍
    的头像 发表于 07-16 11:12 596次阅读

    图像识别算法的优缺点有哪些

    图像识别算法是一种利用计算机视觉技术对图像进行分析和理解的方法,它在许多领域都有广泛的应用,如自动驾驶、医疗诊断、安全监控等。然而,图像识别算法也存在一些优缺点。 一、图像识别算法的优
    的头像 发表于 07-16 11:09 1351次阅读

    图像识别算法的核心技术是什么

    图像识别算法是计算机视觉领域的一个重要研究方向,其目标是使计算机能够像人类一样理解和识别图像中的内容。图像识别算法的核心技术包括以下几个方面: 特征提取 特征提取是
    的头像 发表于 07-16 11:02 572次阅读

    图像识别技术包括自然语言处理吗

    图像识别技术与自然语言处理是人工智能领域的两个重要分支,它们在很多方面有着密切的联系,但也存在一些区别。 一、图像识别技术与自然语言处理的关系 1.1 图像识别技术的定义 图像识别技术
    的头像 发表于 07-16 10:54 634次阅读

    图像识别技术在医疗领域的应用

    一、引言 图像识别技术是一种利用计算机视觉技术对图像进行分析和处理的技术。随着计算机技术、人工智能技术、大数据技术等的发展,图像识别技术在各个领域的应用越来越广泛。在医疗领域,图像识别
    的头像 发表于 07-16 10:48 736次阅读

    图像识别技术的原理是什么

    图像识别技术是一种利用计算机视觉和机器学习技术对图像进行分析和理解的技术。它可以帮助计算机识别和理解图像中的对象、场景和活动。 图像预处理
    的头像 发表于 07-16 10:46 831次阅读

    图像识别属于人工智能吗

    属于。图像识别是人工智能(Artificial Intelligence, AI)领域的一个重要分支。 一、图像识别概述 1.1 定义 图像识别是指利用计算机技术对图像中的内容进行分析
    的头像 发表于 07-16 10:44 955次阅读

    如何利用CNN实现图像识别

    卷积神经网络(CNN)是深度学习领域中一种特别适用于图像识别任务的神经网络结构。它通过模拟人类视觉系统的处理方式,利用卷积、池化等操作,自动提取图像中的特征,进而实现高效的图像识别。本文将从CNN的基本原理、构建过程、训练策略以
    的头像 发表于 07-03 16:16 1132次阅读

    神经网络在图像识别中的应用

    随着人工智能技术的飞速发展,神经网络在图像识别领域的应用日益广泛。神经网络以其强大的特征提取和分类能力,为图像识别带来了革命性的进步。本文将详细介绍神经网络在图像识别中的应用案例,包括卷积神经网络(CNN)在面部
    的头像 发表于 07-01 14:19 615次阅读

    图像识别技术原理 图像识别技术的应用领域

    图像识别技术是一种通过计算机对图像进行分析和理解的技术。它借助计算机视觉、模式识别、人工智能等相关技术,通过对图像进行特征提取和匹配,找出图像
    的头像 发表于 02-02 11:01 2276次阅读

    基于TensorFlow和Keras的图像识别

    TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。定义如果您不了解图像识别的基本概念,将很难完全理解本文的内容。因此在正文开始之前
    的头像 发表于 01-13 08:27 770次阅读
    基于TensorFlow和Keras的<b class='flag-5'>图像识别</b>

    如何使用Python进行图像识别的自动学习自动训练?

    如何使用Python进行图像识别的自动学习自动训练? 使用Python进行图像识别的自动学习和自动训练需要掌握一些重要的概念和技术。在本文中,我们将介绍如何使用Python中的一些常用库和算法来实现
    的头像 发表于 01-12 16:06 538次阅读