作者:陈敏,何山红,车文荃
1 引言
差模跟踪是一种高精度的自动跟踪体制,它有着精度高、天线和差矛盾小等优点。众所周知,传统的多模自跟踪差模提取技术通常利用圆波导差模耦合器来实现,而波形耦合器的设计是其关键的技术。这种波导耦合器对加工精度的要求很高,目前在应用较多的Ku或更低频段上还可以满足要求,但是如果到Ka甚至更高的频段上,对设计和加工误差的要求更高,往往很难得到令人满意的结果。而一般的阵列天线方向图等化性能差, 很难进行反射面的赋形。本文提出一种基于基片集成波导 (SIW) 技术的和差模提取方法,有效地降低了设计和加工的难度。SIW具有低剖面的平面结构,可以与微带,CPW等平面传输线兼容,同时具有矩形波导和微带线的优点,因此获得了较为广泛的应用。馈源由SIW的初级单脉冲辐射天线和多模喇叭组成,其整体结构如图1所示。主要由SIW的单脉冲比较器,缝隙辐射单元和多模波纹喇叭组成。下面首先简要介绍采用SIW技术设计的初级单脉冲辐射器。
2 基片集成波导单脉冲初级辐射器
利用SIW来设计缝隙单脉冲这列天线,单脉冲比较器由四个定向耦合器连接90度延迟线构成,这里我们利用偏置宽度构成90度移相器,使得比较器的结构更紧凑。连接四个SIW定向耦合器,构成单脉冲比较网络,如图2所示。端口5、6、7和8接缝隙辐射单元,可以产生初级的单脉冲辐射信号,作为多模喇叭的激励信号。
比较器印制在高度为2mm,相对介电常数为2.65的介质板上。用HFSS仿真的各端口幅度和相位特性如表一所示。在仿真时为了减少计算时间,按照文献[5]方法把SIW等效为相同高度但具有不同宽度的矩形波导。由表一可以看出,最大幅度不平衡度为0.19dB, 而最大相位不平衡度为6.9度。
连接端口5、6、7和8的SIW缝隙辐射单元结构及驻波特性如图3所示,可以看出在14-14.5GHz范围内的驻波小于1.5。
3 多模喇叭
用上述SIW单脉冲网络产生的和差信号来激励和差模兼载的波纹喇叭,可以在喇叭口径上辐射出所需要的单脉冲方向图,所设计喇叭的结构以及喇叭的尺寸如图4所示:
由SIW缝隙天线辐射单元产生的辐射场经过一段光滑壁段过渡到波纹段,波纹段的张角为 = 28。。在具有光滑壁的喇叭与SIW缝隙辐射单元的交界面上,辐射场的和信号与转换成光滑壁喇叭的TE11模,而差信号转换成光滑壁喇叭的TE21模,从而激励起喇叭的和差模。在光滑壁喇叭与波纹喇叭的过渡面上,光滑壁喇叭的和模激励起波纹波导的和模HE11模,方位面差信号则激励起波纹波导的方位面差模,俯仰面差信号激励起波纹波导的俯仰面差模。波纹喇叭的结构如图5(a) 所示。我们截取了和差信号在波纹波导中不同截面上的电场分布情况以及模式转换, 将其表示在图5中。图中明亮的地方表示场强较大的区域,图(b),(c)和(d)分别表示和信号,方位差和俯仰差信号在喇叭中传输的场分布。
图5(a) 中左边的和差信号是由SIW单脉冲网络形成的。经SIW缝隙单元辐射出的初级单脉冲信号,进入喇叭后与不同截面上的场相匹配,最终在喇叭的口面辐射出所需要的单脉冲方向图。由上图可以看出, 在口面上形成相应的和信号,方位差以及俯仰差信号,场匹配以及辐射结果令人满意。
4 结果与讨论
结合上述理论分析,我们仿真得到喇叭口面辐射方向图,如图6所示。
图6(a) 给出了Phi = 0。、30。、60。、90。、120。和150。这六个面的仿真和方向图,可以看出各个面的和方向图的等化性能很好,图6 (b) 所示为俯仰面和方位面的差方向图。图7给出了和差端口的仿真驻波比图,在14-14.5GHz范围内VSWR
责任编辑:gt
-
天线
+关注
关注
68文章
3178浏览量
140696 -
比较器
+关注
关注
14文章
1633浏览量
107086 -
耦合器
+关注
关注
8文章
718浏览量
59629
发布评论请先 登录
相关推荐
评论