0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

5G毫米波是否真的改变了芯片测试

中科院半导体所 来源:TechSugar 作者:TechSugar 2021-06-29 18:06 次阅读

众所周知,目前全球采用两种不同频段部署5G网络,即3GPP划分的FR1频段和FR2频段,其中FR1频段范围为450MHz-6GHz,最大带宽100MHz,被称为Sub-6GHz频段;FR2频段范围为24.25GHz-52.6GHz,最大带宽400MHz,被称为毫米波频段,两者共同组成了5G频段。

5G改变了什么?

为了充分利用频谱资源,5G在系统中引入了众多针对新应用场景进行了高度优化的技术,例如网络切片、频谱共享和共存、聚合带宽高达1GHz的载波聚合、大规模MIMO和天线阵列系统、以及固定无线接入,小型基站和毫米波技术等等。

这直接导致5G射频前端模块(RF FEM)所需要的功率放大器(PA)、滤波器(Filter)、开关(Switch)、低噪声放大器(LNA)和天线调谐器(Tuner)的需求量倍增。此外,5G智能手机开发商还担心RF器件的质量、散热和能效问题,以及如何将所有这些RF模块全部塞到一部5G手机里。

以大规模MIMO(Massive MIMO)技术为例,5G终端产品中的天线数量相比于4G终端成倍增加,终端设备中天线数量可能是32个、64个,在基站中可能会达到512、1024个。

之所以使用大规模天线阵列,原因在于天线的辐射方向是通过设计固定的,通常很难控制或改变它,除非改变天线的几何形状。而在5G中,相控阵天线则使用波束成型技术来动态控制辐射方向,实现方式主要包括以下4种:

由多个天线在同一时间以同一频率辐射而成。

辐射方向由每个天线单元波的矢量叠加

相控阵可以通过控制阵列中每个天线单元的相位来控制其辐射方向

天线单元越多,天线孔径越大,主瓣增益越大,波束越窄

同时,这也使得天线封装技术AiP(antenna-in-package)逐渐受到重视。Yole Development的数据显示,AiP模组于2019年开始产生销售,预计到2025 年市场空间将达到13亿美元,年均复合增长率为68%。

再以高通最新发布的第4代高通毫米波天线模组为例,该模组支持比前代产品更高的发射功率,支持包括n259(41GHz)新频段在内的全球所有毫米波频段,但却同时保持了与前代产品一样紧凑的占板面积。

pYYBAGDa8NWAdARzAABDqAVBqgI401.png

另一个特别值得关注的,是毫米波技术的引入。

由于采用了毫米波频段和正交频分复用(OFDM)波形,再加上新兴的先进传输方法,使得5G新无线(NR)的空中接口不但与以往几代的移动通信完全不同,也使得毫米波芯片结构更加复杂,涵盖基带、DAC/ADC、IF、波束成形、不同的射频前端、天线等多个复杂组件。

数据显示,2020年之后,5G手机上仅与毫米波相关的IC数量就达到了9-15颗,而为了支持10Gbps的数据传输速率,手机中还增加了贴片天线阵列。因此,对测试工程师来说,他们面对的挑战注定非比寻常。

这意味着,为达到 0 DPPM的质量水准,测试人员不但要控制质量风险,还需要进行更多功能测试,包括增加prober和模组端的功能测试、可以检测由于上游模组质量或者装配导致的故障、面对5G的丰富应用场景,提供多样化的测试用例、以及进行特性测试用以揭示失效机制。

毫米波频段测试的重要技术

5G毫米波手机架构由基带芯片、中频芯片和毫米波射频芯片组成。三者配合完成基带信号到中频再到毫米波的转化,中频芯片的频率范围一般在6-15GHz,毫米波芯片一般工作在24.25-52.6GHz的毫米波频段。

毫米波中频和射频芯片的测试项目,和典型RF收发器(transceiver)芯片类似,主要的测试项目仍然是线性度和灵敏度以及直流/DFT(BIST/Scan)等。

在传统的3G、4G测试中,芯片中的多个测试端口都是通过射频线缆与测试仪表接口连接开展RF测试。然而在5G测试中,不但出现了大规模天线阵列,而且天线和芯片通过封装已经合成一体,测试时无法直接接触到模组里的每一个器件。

此外,测试对象也不仅是天线,而是整个系统,由于天线和射频器件增多,测试空间日渐狭小,使得业界开始纷纷尝试OTA(Over The Air)测试。

OTA测试也被称作“空口测试”。众所周知,天线是信号到自由空间的转换器接口,大天线封装孔径一般大于1/2波长,小天线一般小于1/2波长。由于电磁场的特性与天线的距离密切相关,所以天线测试一般又分为近场测试和远场测试。

进一步细分的话,场区又会被分为“反应区”和“辐射区”,反应区里电场和磁场的能量最强,电磁波相对较弱;远场基本是真正意义上的电磁波辐射了,辐射形式不会随着距离改变,它在大气中以3亿米/秒的速度传播, 两者之间被称之为“过渡区”。

实验室中毫米波的测试需要在吸波暗室中进行, 测试设备主要包括RF测试设备和吸波暗室,前者主要包括信号发生器,频谱仪和矢量分析仪等,暗室使用CATR(紧凑场)还是DFF(直接远场)一般根据波长来决定。此外,实验室一般还会进行波束成型测试和温度测试。泰瑞达旗下的LitePoint仪表可以为毫米波测试提供完整测试方案。

而如果走出实验室,面对UE(用户设备)的制造测试时,流程将主要包括以下三部分:

1.SMT PCBA的校准和测试;

2.毫米波模组的校准和测试;

3.最终成品的测试验证。

但显然,真正待测的5G设备不会只有区区几台,未来几年内将有数十亿台5G设备面世,这就使蜂窝无线设备的大批量生产测试比以往更加复杂,如果不精打细算,无线测试的成本将会进一步提升。因此,5G毫米波芯片在量产中的测试策略,主要包括如下流程:

1. 晶圆测试:需要使用到ATE和探针台。主要包括CW毫米波功能测试,DC/Digital/BIST和5G RAN三温测试等。主要目的是在早期阶段验证芯片性能,最大限度帮助提高良率;

2. 天线封装模块测试(AiP 或 AoB):主要包括毫米波天线的X-RAY检测,AiP和AoB天线的装配良率测试和不同频带的多单元测试。要求毫米波天线装配0 DPPM。

3. OTA模块连接测试:需要使用到ATE Handler。OTA模块的测试需要高质量的Socket来满足毫米波的测试需求。主要包括偶极子天线和贴片天线的连通性测试,有限的功能测试和多单元测试。要求保证毫米波天线辐射性能0 DPPM。

4. OTA模块功能测试:需要使用到OTA的Socket或者屏蔽盒。主要包括OTA远场或近场测试,完全的功能测试,远场的波束成型测试(验证corner芯片的远场性能),5G RAN的多单元和三温测试。保证了毫米波模块的功能指标0 DPPM。

5. 系统板上OTA测试:属于系统级测试。需要OTA远场测试,完全的功能测试,波束成型和多单元测试,这一环节中可以写入校准参数。保证了毫米波模块和天线的整体性能达标。

6. 最终成品OTA测试:也是系统级的测试。需要进行远场测试,完全功能测试,所有载波单元的EVM测试,波束成型校准,载波聚合测试 和5G RAN的多单元和三温测试。保证毫米波和天线的整体性能,写入最终的校准参数,确保0 RMA。

其中,CP测试、OTA连通测试和最终成品OTA测试,是大规模量产中必须包含的。泰瑞达的UltraFlex 毫米波板卡和LitePoint IQgig5G在不同的测试阶段可以提供相应的毫米波测试解决方案。

泰瑞达提供的UltraWaveMX44和UltraWaveMX20板卡只需使用测试设备中的单个插槽,可以基于安装基数很庞大的UltraWave24测试系统实现升级。进行升级时也无需调整系统配置,因此可实现利用同一个测试系统完成对4G和5G毫米波芯片的测试,从而能够将新兴毫米波应用的半导体器件更快推向市场。

结语

5G,尤其是毫米波时代的来临,正在改变传统的芯片测试场景。它要求ATE机台既要具备从OTA测试、天线阵列测试到覆盖Sub-6GHz和毫米波全频段的测试能力,又对上市时间、测试成本和测试指标提出了更严苛的标准。作为全球领先的测试厂商,泰瑞达正与生态系统合作伙伴一起,针对5G无线标准最新设备的特性分析和量产测试,打造全面解决方案。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 封装技术
    +关注

    关注

    12

    文章

    550

    浏览量

    68001
  • FR-
    FR-
    +关注

    关注

    0

    文章

    2

    浏览量

    18256
  • 毫米波
    +关注

    关注

    21

    文章

    1925

    浏览量

    64891
  • 5G
    5G
    +关注

    关注

    1355

    文章

    48479

    浏览量

    564855

原文标题:5G毫米波改变芯片测试

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    走上自研之路,苹果将推首款WiFi芯片5G基带芯片,不支持毫米波

    电子发烧友网报道(文/黄山明)近日,据媒体报道,苹果将推出其首款自研5G基带,但这款基带芯片却存在一个先天缺陷,即不支持毫米波。这也意味着苹果在没有实现支持毫米波之前,还是会继续采购高
    的头像 发表于 09-24 07:44 3986次阅读
    走上自研之路,苹果将推首款WiFi<b class='flag-5'>芯片</b>与<b class='flag-5'>5G</b>基带<b class='flag-5'>芯片</b>,不支持<b class='flag-5'>毫米波</b>

    引领毫米波技术革新,正和微芯发布新一代4uA 24G毫米波传感SoC芯片

    珠海,2024年12月5日 —— 在毫米波领域不断突破创新的珠海正和微芯科技有限公司(以下简称“正和微芯”),今日宣布推出其最新研发的超低功耗24G毫米波传感SoC
    的头像 发表于 12-09 10:45 252次阅读
    引领<b class='flag-5'>毫米波</b>技术革新,正和微芯发布新一代4uA 24<b class='flag-5'>G</b><b class='flag-5'>毫米波</b>传感SoC<b class='flag-5'>芯片</b>

    5G毫米波市场蓬勃发展的因素

    毫米波5G市场迎来决定性时刻的当下,市场需求开始呈指数级攀升并达到一个临界点。需求量的极速膨胀将催生一条持续上扬的增长曲线。为应对这一需求的激增和5G应用场景的爆发,将需要大量关键的毫米波
    的头像 发表于 11-17 10:51 343次阅读

    苹果自研5G芯片获重要进展,毫米波技术暂缺席

    知名科技媒体DigiTimes最新爆料指出,苹果公司在其自主研发的5G调制解调器(基带芯片)项目上取得了显著进展,然而,首个版本却面临一个关键性限制:不支持毫米波技术。这一消息引发了业界的广泛关注,尤其是在考虑到
    的头像 发表于 09-20 16:05 946次阅读

    什么是毫米波雷达?毫米波雷达模组选型

    一、什么是毫米波雷达毫米波雷达是一种非接触型的传感器,其工作频率范围涵盖10毫米(30GHz)至1毫米(300GHz)的波段。这种技术具备精确的定位感知能力,可准确测定目标的位置、速度
    的头像 发表于 09-06 17:38 1298次阅读
    什么是<b class='flag-5'>毫米波</b>雷达?<b class='flag-5'>毫米波</b>雷达模组选型

    毫米波生产测试概述

    电子发烧友网站提供《毫米波生产测试概述.pdf》资料免费下载
    发表于 08-27 09:44 0次下载
    <b class='flag-5'>毫米波</b>生产<b class='flag-5'>测试</b>概述

    5G毫米波测试助力突破高频段设备局限,实现高效外场测试

    用频段。 从图中可以看出,在5G毫米波测试中,需要用到高频段、高灵敏度的频谱分析仪。然而相较于低频段的频谱仪来说,毫米波频段的频谱分析仪很少会集频谱测量功能齐全,便携与低成本于一身;一
    的头像 发表于 08-21 13:34 334次阅读
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b><b class='flag-5'>测试</b>助力突破高频段设备局限,实现高效外场<b class='flag-5'>测试</b>

    5G网络毫米波支持的最大载波带宽是多少?

    5G网络中当前毫米波支持的最大载波带宽是10GHz。首先,我们需要了解什么是5G网络。5G是第五代移动通信技术,它被设计用于提供比4G更快的
    的头像 发表于 08-01 08:10 985次阅读
    <b class='flag-5'>5G</b>网络<b class='flag-5'>毫米波</b>支持的最大载波带宽是多少?

    爱立信与高通、Dronus共同完成使用5G毫米波无人机的制造与仓储用例测试

    近期,爱立信、高通及工业无人机解决方案提供商Dronus共同完成了一项使用5G毫米波无人机的制造与仓储用例测试5G毫米波无人机用例是在制造
    的头像 发表于 07-31 18:03 1.4w次阅读

    Qorvo收购Anokiwave,以硅晶创新推动毫米波5G商业化

    才能真正发挥毫米波5G的巨大潜力。     全球领先的连接和电源解决方案供应商Qorvo于2024年初宣布已就收购Anokiwave达成最终协议,本文将介绍高性能硅基集成电路的领先供应商Anokiwave如何利用硅晶创新,依托第四代芯片
    发表于 07-09 11:17 387次阅读
    Qorvo收购Anokiwave,以硅晶创新推动<b class='flag-5'>毫米波</b><b class='flag-5'>5G</b>商业化

    毫米波应用5G手机低介电绝缘透散热膜

    毫米波(millimeterwave):波长为1~10毫米的电磁毫米波,它位于微波与远红外相交叠的波长范围,因而兼有两种波谱的特点。
    的头像 发表于 07-09 08:10 398次阅读
    <b class='flag-5'>毫米波</b>应用<b class='flag-5'>5G</b>手机低介电绝缘透<b class='flag-5'>波</b>散热膜

    5G毫米波通信有哪些特点和优势?

    随着科技的不断进步,5G技术已经站在了无线通信领域的前沿。尤其是5G毫米波通信,作为一个关键技术,它受到了全世界的关注和研究。
    的头像 发表于 04-03 16:19 1249次阅读

    5G技术面面观:毫米波与Sub-6GHz特性及其量产挑战

    5G 毫米波与Sub-6GHZ特性与量产挑战
    发表于 03-01 10:08 724次阅读
    <b class='flag-5'>5G</b>技术面面观:<b class='flag-5'>毫米波</b>与Sub-6GHz特性及其量产挑战

    5G毫米波与Sub-6GHz频段的特性与技术挑战

    5G毫米波与Sub-6GHz频段的特性与技术挑战
    发表于 01-24 14:22 1560次阅读
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>与Sub-6GHz频段的特性与技术挑战

    长电科技突破5G毫米波芯片封装模块测试难题

    作为芯片封测领域的领军企业,长电科技成功突破了5G毫米波芯片封装模块测试的一系列挑战,以其先进的AiP天线封装技术和专业的
    的头像 发表于 01-22 10:37 981次阅读