0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于FPGA实现扩频通信模块的设计方案与仿真

FPGA技术江湖 来源:FPGA技术江湖 作者:FPGA技术江湖 2021-07-05 14:29 次阅读

导读

无线通信系统中,普遍使用扩频通信技术,因此扩频技术对通信系统具有重要的现实意义。直接序列扩频技术是应用最广的一种扩频技术,FPGA具备高速度的并行性特点在无线通信系统中的优势日益增强,利用FPGA实现直接序列扩频技术,可增大传输速率,可以使扩频技术有更好的发展与应用。

本篇利用本原多项式产生伪随机序列用作扩频,通过同步模块对扩频后的信号进行捕获,通过直接序列解扩模块进行解扩。本篇给出了编解码、扩频解扩、同步的整体方案,使用Quartus实现功能,并结合Matlab和ModelSim对模块进行调试和测试,实现扩频通信模块的搭建仿真,验证其设计的正确性。首先概述了方案设计与论证、整体方案的设计、各个模块的设计、个别模块的调试与各个模块的仿真验证。本篇主要实现的模块有:汉明编码模块、直接序列扩频模块、量化器模块、同步模块、直接序列解扩模块和汉明译码模块。各位大侠可依据自己的需要进行阅读,参考学习。

第三篇内容摘要:本篇会介绍分析调试,包括汉明码解码模块调试、直接序列扩频模块调试、同步模块调试、整体设计资源占用率、整体设计RTL设计图,还会介绍系统测试,包括汉明编码模块测试、直接序列扩频模块测试、量化器模块测试、同步模块测试、直接序列解扩模块测试、汉明译码模块测试、系统整体测试等相关内容。

四、分析调试

4.1汉明编解码模块调试

首先利用Matlab该模块进行调试,利用随机函数生成10个随机数,通过74汉明码编码函数对10个随机函数进行编码,随机数分别为4’h0、4’hb、4’h6、4’h1、4’h3、4’h9、4’h7、4’h9、4’h7和4’hd,编码后分别为7’h00、7’h4b、7’h46、7’h51、7’h23、7’h39、7’h17、7’h39、7’h17和7’h0d。具体如图4.1所示,对应Matlab代码详见附录A。

8a57ed06-dc06-11eb-9e57-12bb97331649.png

图4.1 汉明码编码Matlab仿真图

利用Matlab的随机函数生成10个随机数,通过74汉明码编码函数对10个随机函数进行编码,编码后引入噪声如图4.2所示:

8a676434-dc06-11eb-9e57-12bb97331649.png

图4.2 编码后与加入噪声后对比图

通过译码函数进行译码,如下图4.3所示:

8a709fc2-dc06-11eb-9e57-12bb97331649.png

图4.3 编码前与译码后对比图

根据图4.3可知,当发生一位码值错误时,汉明译码模块可以正确纠错;当发生一位以上码值错误时,汉明译码模块不能正确纠错,导致译码错误。利用Matlab可知汉明译码模块具有译码能力和一位码值的纠错能力。

利用Verilog对汉明码编码模块和汉明译码模块进行编写,然后一同进行调试,在两个模块中间加一噪声模块,保证编码后数据任意一位发生错误,通过译码模块后,判断是否能够进行正确纠错,编码前数据与编码后的数据是否一致,判断两个模块的正确性,调试模型如图4.4所示:

8a80971a-dc06-11eb-9e57-12bb97331649.png

图4.4 断言调试模型

ModelSim仿真波形截图如图4.5所示:

8a8c6fcc-dc06-11eb-9e57-12bb97331649.png

图4.5 汉明编解码模块仿真波形图

利用断言的仿真方式打印报告如图4.6所示,通过确认编解码前后数据一致,也证明汉明编码模块和汉明译码模块正确性。

8a96f0dc-dc06-11eb-9e57-12bb97331649.png

图4.6 打印结果图

4.2直接序列扩频模块调试

利用Matlab对该模块进行调试,利用Matlab伪随机函数生成伪随机数,通过设置初始值来与3.4.2节表3.2的结果进行对比,通过对比可以确定生成伪随机序列满足要求,为采用Verilog设计打好坚实的基础。如图4.7为Matlab生成的伪随机数,对应Matlab代码详见附录A。

8ad1bb68-dc06-11eb-9e57-12bb97331649.png

图4.7 Matlab生成伪随机数图

4.3同步模块调试

在进行同步调试时出现对不齐同步头的问题,例如计算所延时时间应为29个系统时钟周期,即计数器仅需要延时29个时钟周期,因为计数器是从“0”开始进行计数,当计数值等于延时时间-1时,模块可以进行同步头解扩处理,由于没有对齐同步头,导致利用最小二乘法计算结果均大于预设阈值,系统无法进行下去。仿真波形截图如图4.8所示:

8ae70338-dc06-11eb-9e57-12bb97331649.png

图4.8 同步错误情况仿真波形图

根据仿真波形结合设计代码最终找到原因,由于同步模块对延时时间信号进行捕获也需要一个系统时钟周期,所以计数器的计数值应该等于延时时间-2,模块才可以进行同步头解扩处理,仿真波形截图如图4.9所示:

8b72920e-dc06-11eb-9e57-12bb97331649.png

图4.9 同步修改正确仿真波形图

4.4 整体设计资源占用率

在设计完成后,在如图4.10所示,该整体设计共使用3735个组合逻辑,占5%;使用1782个寄存器,占3%;使用39个I/O引脚,占6%;使用5888个存储器,约占1%;使用2个9bit嵌入式硬件乘法器,约占1%。

8b8bc26a-dc06-11eb-9e57-12bb97331649.png

图4.10 FPGA资源占用率

4.5 整体设计RTL视图

由于例化的原因导致与整体设计框图不一致,因为例化对其整体设计功能无影响。所以设计整体RTL视图如图4.11所示:

8b9e29e6-dc06-11eb-9e57-12bb97331649.png

图4.11 设计整体RTL图

五、系统测试

对整体系统设计进行测试,通过发送端到接收端的各个模块逐级进行测试,确保每个环节的正确性。

5.1 汉明编码模块模块测试

利用Verilog进行汉明码编码模块进行编写。在testbench测试文件总输入数据初始化为8’h55,通过时钟上升沿到来进行取反,所以数据依次为8’h55、8’haa、8’h55…8’haa等,接口采用同步fifo进行数据缓冲,如图5.1所示,在测试文件中通过判断t_full信号高有效来判断fifo是否为满状态,若不是满状态,则置写操作的使能信号t_wrreq高电平有效,对fifo进行写操作,否则不进行写操作。汉明码编码模块通过判断h_empty信号来判断fifo是否为空状态,若不为空,则置读操作使能信号h_rdreq高电平有效对fifo进行读操作,否则不进行读操作。

8bdce3a2-dc06-11eb-9e57-12bb97331649.png

图5.1 fifo接口图

通过汉明码编码模块对数据进行汉明码编码,如图5.2所示,信号ha_data为对应编码结果。4’h5编码为7’h2d,4’ha编码为7’h52,如图5.2表明,汉明编码模块能够正确编码。

8bea1b12-dc06-11eb-9e57-12bb97331649.png

图5.2 汉明码编码模块ModelSim仿真波形图

5.2 直接序列扩频模块测试

利用Verilog进行伪随机数模块编写,初始值为5’b00001,生成序列为如图5.3所示。信号m_bit为伪随机数,在进行编码数据信号进行扩频之前,应将数据信息加上帧头14’b11111111111110,信号m_data为汉明编码模块编码后的7bits数据信息,信号s_bit为帧头或编码数据信息并串转换后的信号,信号bc控制信号s_bit哪个数据位于信号m_bit相异或,得到的结果为输出信号q_data,从而实现直接序列扩频的功能。如图5.3表明,直接序列扩频模块能够正确完成扩频。

8c024b92-dc06-11eb-9e57-12bb97331649.png

8c3446ce-dc06-11eb-9e57-12bb97331649.png

图5.3 直接序列扩频模块ModelSim仿真波形图

5.3 量化器模块测试

量化器模块将单比特的信号变为8bits有符号数,仿真波形截图如图5.4所示,可以确定量化器模块能够正确进行对信号量化。

8c77cb42-dc06-11eb-9e57-12bb97331649.png

图5.4 量化器模块ModelSim仿真波形图

5.4 同步模块测试

为了模拟实际传输过程,扩频信号再进入同步模块前引入±46的噪声,实际输入值信号line如图5.5所示:

8c9ac408-dc06-11eb-9e57-12bb97331649.png

图5.5 加入噪声后ModelSim仿真波形图

利用最小二乘法对输入信号与31个模板进行计算,得到小于阈值的唯一的延时数据信号xx如图5.6所示,模板2满足要求,信号xx计算值为29,因此要进行29拍解扩时钟周期的延时,来对齐同步头。

8ca5c074-dc06-11eb-9e57-12bb97331649.png

8cd8e71a-dc06-11eb-9e57-12bb97331649.png

8d09e522-dc06-11eb-9e57-12bb97331649.png

图5.6 计算延时ModelSim仿真波形图

通过延时达到对齐同步头的目的,对齐使能信号en_m为高电平,说明已对齐。如图5.7所示:

8d1ed89c-dc06-11eb-9e57-12bb97331649.png

图5.7 同步头对齐ModelSim仿真波形图

对齐后将数据信号每31bits与模板“0”模板“1”进行最小二乘法计算,如图5.8所示:

8d2a2eb8-dc06-11eb-9e57-12bb97331649.png

图5.8 同步头解扩ModelSim仿真波形图

信号data_tm为判断出的信号数据,当检测到同步头最后一位的“0”数据信息后,说明同步头已结束,同步功能已实现。如图5.9所示,同步模块能够正确实现同步。

8d577594-dc06-11eb-9e57-12bb97331649.png

图5.9 同步头识别ModelSim仿真波形图

5.5直接序列解扩模块测试

当检测到最后一位为“0”后,进入数据信号解扩过程,与同步头解扩相类似,只是把解扩后的数据利用计数器的计数值,写到寄存器对应的位置,同时进行串并转换功能,信号bc为计数器,信号hdata_reg1为串并转换后存储数据的寄存器。如图5.10所示,直接序列解扩模块能够正确实现解扩。

8d74c388-dc06-11eb-9e57-12bb97331649.png

8d81c150-dc06-11eb-9e57-12bb97331649.png

图5.10 数据信息解扩ModelSim仿真波形图

5.6 汉明译码模块测试

利用Verilog对汉明译码模块进行编写。通过直接序列解扩模块后的数据经过汉明译码模块后,如图5.11所示:

8d9a90d6-dc06-11eb-9e57-12bb97331649.png

图5.11 汉明译码ModelSim仿真波形图

信号data_reg被译码正确后通过对fifo的满标志信号H_full高电平进行判断,若为高电平则不进行写操作,若为低电平则将fifo的写使能信号置高进行写操作,将译码后的数据写入fifo中。如图5.12所示,汉明译码模块能够对数据进行正确译码。

8da5d0a4-dc06-11eb-9e57-12bb97331649.png

图5.12 数据输出端口仿真截图

5.7系统整体测试

通过打印信息确认,原始数据与译码后的数据一致,能够确认系统整体设计正确,如图5.13所示:

8dc5cb34-dc06-11eb-9e57-12bb97331649.png

图5.13 打印结果截图

引用2.1节设计要求,总结系统整体设计完成对应功能情况,如表5.1所示:

表5.1 系统功能测试表

8de021f0-dc06-11eb-9e57-12bb97331649.png

结论

直接序列扩频是主流的扩频通信之一,有着许多重要特点与优点,本篇利用FPGA的处理速度和并行运行等特点,设计完成了一个基于FPGA扩频模块设计。在利用Quartus II、Matlab和ModelSim对直接序列扩频模块进行了仿真分析。利用伪随机序列进行扩频,是扩频模块获得高抗噪声性能和抗干扰性能的关键。

本文首先对直接序列扩频模块一般原理进行介绍,然后重点分析直接序列扩频解扩,合理分配功能模块、准确掌握各个模块之间的控制和被控制的关系,以及整体时序关系。通过从接口fifo读取数据后,采用汉明编码模块,完成了对数据的编码,在完成编码后加入同步头,为同步做准备。利用本原多项式产生伪随机数,伪随机数与编码后的数据进行异或处理,已达到扩频的目的,扩频后的数据进行量化且引入噪声送入同步模块。同步模块利用31个伪随机数的模板,采用最小二乘法对数据进行计算,计算值小于预定阈值,则该数据对应的信息为接收端需要进行延拍的个数,对齐后利用2个伪随机数的模板对数据进行“0”和“1”的判断,当同步头数据值出现“0”后,代表下一位开始为数据信息,直接序列解扩模块开始进行解扩处理,和同步模块同理,将数据与2个伪随机进行最小二乘法的计算,从而达到解扩的目的。解扩后的数据通过汉明译码模块进行译码后写入接口fifo,再通过fifo输出。经过验证该整体模块达到扩频的目的,提高了抗噪声的能力,各个模块能够正确完成对应功能。

附录部分源代码

伪随机数Matlab代码:

polynomial=[1 0 0 1 0 1];reg=[0 0 0 0 1];grade=length(polynomial)-1;PN_Length=(2^grade-1); pn=zeros(1,PN_Length);n=0; c=zeros(1,grade);for i=grade1 if polynomial(i)==1 n=n+1; c(n)=grade+1-i; endend q=0; for i=1:PN_Length p(i)=reg(1) m=reg(grade+1-c(1)); for q=2:grade if (c(q)>0) & (reg(grade+1-c(q))==1) m=~m; end end for q=1:(grade-1) reg(q)=reg(q+1); end reg(5)=m;end

汉明码编码译码Matlab代码:

k=4;n=7;msg=randint(10,4,2)code=encode(msg,n,k)code_noise=rem(code+rand(10,7)>0.95,2)rcv=decode(code_noise,n,k)disp(['Error rate in the received code:' num2str(symerr(code,code_noise)/length(code))])disp(['Error rate after decode:' num2str(symerr(msg,rcv)/length(msg))])

汉明码编码Verilog代码:

module hamming74(clk_10, rst_n, hi_data, ha_data, hm_sel); input clk_10; input rst_n; input [7:0] hi_data; output reg [6:0] ha_data; input hm_sel; wire [3:0] hm_data; wire q0,q1,q2; assign hm_data = hm_sel ? hi_data[7:4] : hi_data[3:0]; always @ (posedge clk_10) begin if(!rst_n) begin ha_data <= 0; end else begin ha_data[6] <= hm_data[3]; ha_data[5] <= hm_data[2]; ha_data[4] <= hm_data[1]; ha_data[3] <= q2; ha_data[2] <= hm_data[0]; ha_data[1] <= q1; ha_data[0] <= q0; end end assign q0 = hm_data[0] ^ hm_data[1] ^ hm_data[3]; assign q1 = hm_data[0] ^ hm_data[2] ^ hm_data[3]; assign q2 = hm_data[1] ^ hm_data[2] ^ hm_data[3];endmodule

伪随机数产生Verilog代码:

module m_generator(clk_10, rst_n, m_bit); input clk_10; input rst_n; output m_bit; reg [4:0] q; parameter KEY = 5'b00001; always @ (posedge clk_10) begin if(!rst_n) begin q <= KEY;// q <= 0; end else begin q[0] <= q[1]; q[1] <= q[2]; q[2] <= q[3]; q[3] <= q[4]; q[4] <= q[3] ^ q[0]; end end assign m_bit = q[0]; endmodule

伪随机序列与数据信息异或处理Verilog代码:

module me_xor(clk, rst_n, s_bit, m_bit, q_data); input clk, rst_n; input s_bit, m_bit; output reg q_data; always @ (posedge clk) begin if (!rst_n) q_data <= 0; else q_data <= s_bit ^ m_bit; end endmodule

量化器模块Verilog代码:

module quantizer(clk, rst_n, qdata, line_out); input clk, rst_n; input qdata; output reg signed [7:0] line_out; always @ (posedge clk) begin if (!rst_n) line_out <= 0; else if (qdata) line_out <= 63; else line_out <= -64; end endmodule

最小二乘法Verilog代码:

module m_leastsquare(clk_10, rst_n, line, distance); input clk_10, rst_n; input signed [7:0] line; output reg signed [21:0] distance; parameter KEY = 5'b00001; wire m; reg [4:0] count; reg signed [21:0] int_distance; always @ (posedge clk_10) begin if (!rst_n || count >= 5'd30) count <= 0; else count <= count + 5'd1; end m_generator #(.KEY(KEY)) u_mg(.clk_10(clk_10), .rst_n(rst_n), .m_bit(m)); always @ (posedge clk_10) begin if (!rst_n) begin int_distance <= 0; distance <= 0; end else if (count < 5'd30) if (!m) int_distance <= int_distance + (line - 63) * (line - 63); else int_distance <= int_distance + (line + 64) * (line + 64); else begin int_distance <= 0; if (!m) distance <= int_distance + (line - 63) * (line - 63); else distance <= int_distance + (line + 64) * (line + 64); end endendmodule

同步模块Verilog部分代码:

module test_mdecoder_ls(clk_10, rst_n, line, xx); input clk_10, rst_n; input signed [7:0] line; output reg [5:0] xx; wire signed [21:0] distance [30:0]; wire [30:0] xx_reg; integer i; m_leastsquare #(.KEY(5'h01)) u0(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[0])); m_leastsquare #(.KEY(5'h10)) u1(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[1])); m_leastsquare #(.KEY(5'h08)) u2(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[2])); m_leastsquare #(.KEY(5'h14)) u3(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[3])); m_leastsquare #(.KEY(5'h0A)) u4(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[4])); m_leastsquare #(.KEY(5'h15)) u5(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[5])); m_leastsquare #(.KEY(5'h1A)) u6(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[6])); m_leastsquare #(.KEY(5'h1D)) u7(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[7])); m_leastsquare #(.KEY(5'h0E)) u8(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[8])); m_leastsquare #(.KEY(5'h17)) u9(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[9])); m_leastsquare #(.KEY(5'h1B)) u10(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[10])); m_leastsquare #(.KEY(5'h0D)) u11(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[11])); m_leastsquare #(.KEY(5'h06)) u12(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[12])); m_leastsquare #(.KEY(5'h03)) u13(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[13])); m_leastsquare #(.KEY(5'h11)) u14(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[14])); m_leastsquare #(.KEY(5'h18)) u15(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[15])); m_leastsquare #(.KEY(5'h1C)) u16(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[16])); m_leastsquare #(.KEY(5'h1E)) u17(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[17])); m_leastsquare #(.KEY(5'h1F)) u18(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[18])); m_leastsquare #(.KEY(5'h0F)) u19(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[19])); m_leastsquare #(.KEY(5'h07)) u20(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[20])); m_leastsquare #(.KEY(5'h13)) u21(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[21])); m_leastsquare #(.KEY(5'h19)) u22(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[22])); m_leastsquare #(.KEY(5'h0C)) u23(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[23])); m_leastsquare #(.KEY(5'h16)) u24(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[24])); m_leastsquare #(.KEY(5'h0B)) u25(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[25])); m_leastsquare #(.KEY(5'h05)) u26(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[26])); m_leastsquare #(.KEY(5'h12)) u27(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[27])); m_leastsquare #(.KEY(5'h09)) u28(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[28])); m_leastsquare #(.KEY(5'h04)) u29(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[29])); m_leastsquare #(.KEY(5'h02)) u30(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[30])); assign xx_reg[0] = (distance[0]>0 && distance[0]< 19'd50000)? 1'b1:1'b0; assign xx_reg[1] = (distance[1]>0 && distance[1]< 19'd50000)? 1'b1:1'b0; assign xx_reg[2] = (distance[2]>0 && distance[2]< 19'd50000)? 1'b1:1'b0; assign xx_reg[3] = (distance[3]>0 && distance[3]< 19'd50000)? 1'b1:1'b0; assign xx_reg[4] = (distance[4]>0 && distance[4]< 19'd50000)? 1'b1:1'b0; assign xx_reg[5] = (distance[5]>0 && distance[5]< 19'd50000)? 1'b1:1'b0; assign xx_reg[6] = (distance[6]>0 && distance[6]< 19'd50000)? 1'b1:1'b0; assign xx_reg[7] = (distance[7]>0 && distance[7]< 19'd50000)? 1'b1:1'b0; assign xx_reg[8] = (distance[8]>0 && distance[8]< 19'd50000)? 1'b1:1'b0; assign xx_reg[9] = (distance[9]>0 && distance[9]< 19'd50000)? 1'b1:1'b0; assign xx_reg[10] = (distance[10]>0 && distance[10]< 19'd50000)? 1'b1:1'b0; assign xx_reg[11] = (distance[11]>0 && distance[11]< 19'd50000)? 1'b1:1'b0; assign xx_reg[12] = (distance[12]>0 && distance[12]< 19'd50000)? 1'b1:1'b0; assign xx_reg[13] = (distance[13]>0 && distance[13]< 19'd50000)? 1'b1:1'b0; assign xx_reg[14] = (distance[14]>0 && distance[14]< 19'd50000)? 1'b1:1'b0; assign xx_reg[15] = (distance[15]>0 && distance[15]< 19'd50000)? 1'b1:1'b0; assign xx_reg[16] = (distance[16]>0 && distance[16]< 19'd50000)? 1'b1:1'b0; assign xx_reg[17] = (distance[17]>0 && distance[17]< 19'd50000)? 1'b1:1'b0; assign xx_reg[18] = (distance[18]>0 && distance[18]< 19'd50000)? 1'b1:1'b0; assign xx_reg[19] = (distance[19]>0 && distance[19]< 19'd50000)? 1'b1:1'b0; assign xx_reg[20] = (distance[20]>0 && distance[20]< 19'd50000)? 1'b1:1'b0; assign xx_reg[21] = (distance[21]>0 && distance[21]< 19'd50000)? 1'b1:1'b0; assign xx_reg[22] = (distance[22]>0 && distance[22]< 19'd50000)? 1'b1:1'b0; assign xx_reg[23] = (distance[23]>0 && distance[23]< 19'd50000)? 1'b1:1'b0; assign xx_reg[24] = (distance[24]>0 && distance[24]< 19'd50000)? 1'b1:1'b0; assign xx_reg[25] = (distance[25]>0 && distance[25]< 19'd50000)? 1'b1:1'b0; assign xx_reg[26] = (distance[26]>0 && distance[26]< 19'd50000)? 1'b1:1'b0; assign xx_reg[27] = (distance[27]>0 && distance[27]< 19'd50000)? 1'b1:1'b0; assign xx_reg[28] = (distance[28]>0 && distance[28]< 19'd50000)? 1'b1:1'b0; assign xx_reg[29] = (distance[29]>0 && distance[29]< 19'd50000)? 1'b1:1'b0; assign xx_reg[30] = (distance[30]>0 && distance[30]< 19'd50000)? 1'b1:1'b0; always @ (*) begin if(!rst_n) begin xx <= 6'd32; end else begin for(i=0;i<30;i=i+1) if(xx_reg[i]==1) xx <= 31-i; end end endmodule

直接序列解扩模块部分Verilog代码:

module test_mdecoder_2s(clk_10, rst_n, line, data_tm, en_m); //测试,最小二乘法 input clk_10, rst_n; input signed [7:0] line; output data_tm; input en_m; wire signed [30:0] distance [1:0]; wire [30:0] reg1 , reg0 ; m_leastsquare_nl #(.KEY(5'h01)) u32(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[0]), .en_m(en_m));//0 m_leastsquare_no #(.KEY(5'h01)) u33(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[1]), .en_m(en_m));//1 assign data_tm = ( distance[1]>distance[0])? 1'b0:1'b1;//比较俩数据大小 endmodule

汉明码译码Verilog代码:

module deserialzer(clk_10, rst_n, data_tm, en_m, hdata, h_full, h_wrreq);/* 串转并模块加汉明译码模块 */ input clk_10; input rst_n; input data_tm; input en_m; output reg [7:0] hdata; input h_full; output reg h_wrreq; reg [5:0] count; reg [2:0] bc; reg [6:0] hdata_reg1; reg start; wire c0,c1,c2; reg lh; reg [3:0] data_reg; /* 用来计算数据位 */ always @ (posedge clk_10) begin if(!rst_n) begin count <= 0; bc <= 0; end else if(en_m && count < 30) count <= count + 6'd1; else begin if(count == 6'd30 && bc < 3'd6) bc <= bc + 3'd1; else bc <= 0; count <= 0; end end /* 用来缓冲数据 */ always @ (posedge clk_10) begin hdata_reg1[bc] <= data_tm; end /* 用来控制数据写在高低位,同时控制发送写使能 */ always @ (posedge clk_10) begin if(!rst_n) begin h_wrreq <= 0; lh <= 1; end else if(!h_full && bc == 3'd6 && count == 6'd30) begin lh <= ~lh; if(lh) h_wrreq <= 0; else h_wrreq <= 1; end else h_wrreq <= 0; end /* 用来控制译码的使能 */ always @ (posedge clk_10) begin if(!rst_n) begin start <= 0; end else if(!h_full && bc == 3'd6 && count == 6'd29) begin start <= 1; end else start <= 0; end assign c0 = hdata_reg1[0] ^ hdata_reg1[2] ^ hdata_reg1[4] ^ hdata_reg1[6]; assign c1 = hdata_reg1[1] ^ hdata_reg1[2] ^ hdata_reg1[5] ^ hdata_reg1[6]; assign c2 = hdata_reg1[3] ^ hdata_reg1[4] ^ hdata_reg1[5] ^ hdata_reg1[6]; /* 用来高低位数据赋值 */ always @ (*) begin if(lh) hdata[7:4] <= data_reg; else hdata[3:0] <= data_reg; end always @ (posedge clk_10) begin if(!rst_n) begin data_reg <= 0; end else if (start) case({c2,c1,c0}) 3'b000:begin//没错误 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b001:begin//校验位hc_in[0]有错误 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b010:begin//校验位hc_in[1]有错误 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b011:begin//校验位hc_in[0]、hc_in[1]有错误 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= ~hdata_reg1[2]; end 3'b100:begin//校验位hc_in[2]有错误 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b101:begin//校验位hc_in[0]、hc_in[2]有错误 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= ~hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b110:begin//校验位hc_in[1]、hc_in[2]有错误 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= ~hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b111:begin//校验位hc_in[1]、hc_in[2]、hc_in[0]有错误 data_reg[3] <= ~hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end endcase end endmodule

文章出处:【微信公众号:FPGA技术江湖】

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1625

    文章

    21663

    浏览量

    601670
  • 无线通信
    +关注

    关注

    58

    文章

    4512

    浏览量

    143402
  • 通信系统
    +关注

    关注

    6

    文章

    1170

    浏览量

    53280

原文标题:原创系统设计精选 | 基于FPGA的扩频通信系统设计(附代码)

文章出处:【微信号:HXSLH1010101010,微信公众号:FPGA技术江湖】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    LORA模块与其他通信模块的比较

    模块概述 定义 :LORA是一种基于扩频技术的无线调制方式,主要用于长距离通信。 特点 :低功耗、长距离(可达数公里)、星型或网状网络拓扑。 应用场景 :智慧城市、农业监测、环境监测等。 其他
    的头像 发表于 10-31 16:00 339次阅读

    无线扩频系统由什么组成

    无线扩频系统是一种利用扩频技术来提高信号传输的抗干扰能力和安全性的通信系统。扩频通信技术通过将传输信号的带宽扩展到远大于原始信号带宽,从而在接收端通过相关处理恢复原始信号。这种技术在军
    的头像 发表于 10-15 16:33 186次阅读

    基于MATLAB的通信系统设计

    通信系统设计领域,MATLAB作为一款强大的数学计算与仿真软件,广泛应用于信号处理、通信系统建模与仿真等方面。本文将详细介绍一个基于MATLAB的
    的头像 发表于 07-18 15:52 987次阅读

    安信可 LoRa 系列模块Ra-01H,可用于自动抄表,安防系统,远程灌溉系统等

    安信可 LoRa 系列模块(Ra-01H)由安信可科技设计开发。该模组用于超长距离扩频通信,其射频芯片 SX1276 主要采用 LoRa™远程调制解调器,用于超长距离扩频通信,抗干扰性强,能够最大
    的头像 发表于 06-24 15:52 470次阅读
    安信可 LoRa 系列<b class='flag-5'>模块</b>Ra-01H,可用于自动抄表,安防系统,远程灌溉系统等

    安信可LoRa模组Ra-01,超长距离扩频通信,抗干扰性强

    安信可 LoRa 系列模块(Ra-01)由安信可科技设计开发。该模组用于超长距离扩频通信,其射频芯片 SX1278 主要采用 LoRa™远程调制解调器,用于超长距离扩频通信,抗干扰性强,能够最大
    的头像 发表于 06-13 14:14 403次阅读
    安信可LoRa模组Ra-01,超长距离<b class='flag-5'>扩频通信</b>,抗干扰性强

    扩频通信的主要特点有哪些

    扩频通信是一种无线通信技术,它通过将信号的频带宽度故意扩展到比原始信息带宽大得多的程度来实现通信
    的头像 发表于 05-07 15:26 1153次阅读

    lora技术实现远距离通信的原因有哪些?

    LoRa技术之所以能够实现远距离传播,主要得益于其扩频通信的原理、低功耗设计以及对多种影响因素的优化处理。这些因素共同作用,使得LoRa技术在无线通信领域具有独特的优势。
    的头像 发表于 04-25 17:48 816次阅读

    LoRa LLCC68模块:工业级晶振+先进LoRa技术,实现稳定远距离通信

    LoRa LLCC68是基于 Semtech 公司的射频芯片 LLCC68 设计的无线射频模块。采用新一代 LoRa扩频调制技术,用于超长距离扩频通信。该模块具有体积小、超低的接收功耗
    的头像 发表于 03-27 16:45 1300次阅读
    LoRa  LLCC68<b class='flag-5'>模块</b>:工业级晶振+先进LoRa技术,<b class='flag-5'>实现</b>稳定远距离<b class='flag-5'>通信</b>

    FPGA与LoRa模块的串口通信问题

    自己画的FPGA的PCB板,FPGA与LoRa模块是通过串口相连的,但是传输不了数据。 FPGA和串口助手可以通信,串口助手和LoRa
    发表于 03-21 18:09

    fpga仿真器接口定义

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)仿真器接口的定义主要依赖于仿真器的具体设计和所支持的通信协议。在
    的头像 发表于 03-15 14:01 1146次阅读

    调制技术在通信领域有哪些具体应用?

    )、频移键控(FSK)和相移键控(PSK)等。这些技术通过在载波信号上改变幅度、频率或相位来编码数字信息。 扩频通信扩频通信是一种利用调制技术实现信号扩频
    的头像 发表于 02-29 18:00 1453次阅读

    什么是扩频通信扩频技术在CDMA和TDMA中的应用

    随着扩频技术的推广,许多该领域之外的电子工程师也希望了解这项技术。
    的头像 发表于 01-25 09:59 3250次阅读
    什么是<b class='flag-5'>扩频通信</b>?<b class='flag-5'>扩频</b>技术在CDMA和TDMA中的应用

    扩频通信系统之信噪比等效知识介绍

    前一篇文章已经仿真不同信噪比下的误码性能了,如何和理论误码结果等效呢?扩频通信也有理论误码率值吗?有!看调制方式!
    的头像 发表于 01-12 10:10 808次阅读
    <b class='flag-5'>扩频通信</b>系统之信噪比等效知识介绍

    扩频通信是什么?扩展频谱通信的特点

    扩频通信是扩展频谱通信的简称,它是一种信息传输方式,其特点是传输信息所用的带宽远大于信息本身的带宽。这种技术是通过增加信号带宽降低信噪比,从而提高抗干扰容限。 在发端,扩频通信技术以扩频
    的头像 发表于 12-05 17:23 1423次阅读

    用proteus和keil实现串口通信仿真

    前面一课讲述了串行口通信的技术原理,本课通过安装虚拟串口,用proteus和keil实现串口通信仿真
    的头像 发表于 11-27 16:42 5672次阅读
    用proteus和keil<b class='flag-5'>实现</b>串口<b class='flag-5'>通信</b><b class='flag-5'>仿真</b>