0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

毫米波雷达在自动驾驶汽车中的作用及应用分析

深圳市汽车电子行业协会 来源:深圳市汽车电子行业协会 作者: 阿宝 2021-07-05 16:14 次阅读

一直以来,激光雷达因能对周围环境实现3D感知而备受自动驾驶主流者的“宠爱”。不过无论是激光雷达还是摄像头、超声波传感器,都容易受到恶劣天气环境影响导致性能降低甚至失效(恶劣天气环境往往是事故高发的主要原因),因而都存在“致命”缺陷!这众时候,毫米波雷达凭借可穿透尘雾、雨雪、不受恶劣天气影响的绝对优势,且唯一能够“全天候全天时”工作的超能力,成为汽车ADAS不可或缺的核心传感器之一。

现在大家购买汽车基本上,都要有以下的辅助驾驶功能,

1. ACC(自适应巡航)

2. BSD&LCA(盲点监测和变道辅助)

3. AEB(自动紧急制动,通常配合摄像头进行数据融合)

而基本上这些功能都是摄像头同毫米波雷达辅助一起完成的,理论上只有摄像头也可以完成,但是回忆瓶颈,使用毫米波雷达可以让整个系统更加稳定和安全。

什么是雷达

由于我们大学是气象学院的前身,所以学校里面会非常多雷达接收的天线,大脑里面第一时间想到的就是上图这样的雷达场景,如果车上背这么大一个家伙,根本无法行走,所以我们先来看看雷达的工作原理

雷达是利用无线电回波以探测目标方向和距离的一种装置,用于无线电探向与测距,全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,改写了历史。二战后,雷达开始有许多和平用途。

雷达, 是英文RADAR的音译, 源于Radio Detection and Ranging的缩写, 意思为“无线电探测和测距”,即用无线电的方法发现目标并测定它们的空间位置,这也揭示了雷达最重要任务就是检测与目标物体的距离、速度和方向。

毫米波雷达测距原理很简单,就是把无线电波(毫米波)发出去,然后接收回波,根据收发的时间差测得目标的位置数据和相对距离。根据电磁波的传播速度,可以确定目标的距离公式为:s=ct/2,其中s为目标距离,t为电磁波从雷达发射出去到接收到目标回波的时间,c为光速。

神奇的多普勒原理

毫米波雷达测速和普通雷达一样,都是基于多普勒效应(Dopler Effect)原理。当声音,光和无线电波等振动源与观测者以相对速度相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。当发射的电磁波和被探测目标有相对移动、回波的频率会和发射波的频率不同。

当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机频率。由多普勒效应所形成的频率变化叫做多普勒频移,它与相对速度成正比,与振动频率成反比。

51def7ec-db90-11eb-9e57-12bb97331649.png

所以,通过检测这个频率差,可以测得目标相对于雷达的移动速度,也就是目标与雷达的相对速度。根据发射脉冲和接收的时间差,可以测出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。

毫米波的频段在哪儿

毫米波(millimeter wave )波长为 1~10 毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。

5202949a-db90-11eb-9e57-12bb97331649.png

根据波的传播理论,频率越高,波长越短,分辨率越高,穿透能力越强,但在传播过程的损耗也越大,传输距离越短;相对地,频率越低,波长越长,绕射能力越强,传输距离越远。所以与微波相比,毫米波的分辨率高、指向性好、抗干扰能力强和探测性能好。与红外相比,毫米波的大气衰减小、对烟雾灰尘具有更好的穿透性、受天气影响小。这些特质决定了毫米波雷达具有全天时全天候的工作能力。

它具有以下主要特点:

•极宽的带宽:通常认为毫米波频率范围为 26.5~300GHz,带宽高达 273.5GHz。超过从直流到微波全部带宽的 10 倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达 135GHz,为微波以下各波段带宽之和的 5 倍。这在频率资源紧张的今天无疑极具吸引力。

•波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个 12cm 的天线,在 9.4GHz 时波束宽度为 18 度,而 94GHz 时波速宽度仅 1.8 度。因此可以分辨相距更近的小目标或者更为清晰地观察目标的细节。

•与激光相比:毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。

•和微波相比:毫米波元器件的尺寸要小得多。因此毫米波系统更容易小型化。

大气窗口和毫米波雷达的频段划分

通常大气层中水汽、氧气会对电磁波有吸收作用,目前绝大多数毫米波应用研究集中在几个“大气窗口”频率和三个“衰减峰”频率上。所谓的“大气窗口”是指电磁波通过大气层较少被反射、吸收和散射的那些透射率高的波段。如图3,我们可以看到毫米波传播受到衰减较小的“大气窗口”主要集中在35GHz、45GHz、94GHz、140GHz、220GHz频段附近。而在60GHz、120GHz、180GHz频段附近衰减出现极大值, 即“衰减峰”。一般说来, “大气窗口”频段比较适用于点对点通信,已被低空空地导弹和地基雷达所采用,而“衰减峰”频段被多路分集的隐蔽网络和系统优先选用,用以满足网络安全系数的要求。

521a9fb8-db90-11eb-9e57-12bb97331649.png

毫米波这个波段频率很高,但是这个频段里很多频率区域的电磁波在空气里传播很容易被水分子、氧气吸收,所以可用的就是几个典型的频段,24、60、77、120GHz。当然24GHz很特别,他严格来讲不是毫米波,因为它的波长在1cm左右。但是它是最早被利用的。现在各个国家把24GHz划出来可以民用,77GHz划分给了汽车防撞雷达,24Ghz也在汽车里用得最早。

52493a12-db90-11eb-9e57-12bb97331649.png

24GHz将被更高频代替。由于欧洲电信标准协会和美国联邦通信委员会制定了频谱法规和标准,24GHz的UWB将被淘汰。截至2022年1月1日,24GHz超宽带将不再允许在欧洲和美国用于工业用途。60GHz频段的射频使用不受法规的限制,因此60GHz成为全球工业环境中雷达传感应用的良好替代方案。60GHz的使用将会使得波长变短。由于更长的波长需要更大的天线阵列,但是,当波长变短时,可以使天线阵的尺寸减到最小,从而达到相同的性能。

毫米波雷达发展历程

52677518-db90-11eb-9e57-12bb97331649.png

可以看到毫米波雷达在1940年开始研制,真正在汽车上开始研发是1973年,由于价格太昂贵推迟了一段时间,在1986左右开始在汽车上商用,真正在汽车蓬勃发展是在1999年奔驰S级上使用77GHz自主巡航控制系统

文章出处:【微信公众号:深圳市汽车电子行业协会】

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 雷达
    +关注

    关注

    50

    文章

    2947

    浏览量

    117658
  • 毫米波
    +关注

    关注

    21

    文章

    1925

    浏览量

    64874
  • 自动驾驶
    +关注

    关注

    784

    文章

    13852

    浏览量

    166579

原文标题:【行业资讯】自动驾驶传感器之毫米波雷达(一)基础篇

文章出处:【微信号:qidianxiehui,微信公众号:深圳市汽车电子行业协会】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    毫米波雷达智能交通系统作用

    毫米波雷达智能交通系统中发挥着至关重要的作用。以下是对其作用的介绍: 实时监测与数据采集 : 毫米波
    的头像 发表于 12-03 18:22 712次阅读

    毫米波雷达的基频和调制技术 毫米波雷达机器人导航的应用

    毫米波雷达信号处理的重要一环。通过调制技术,可以将一个低频信号(调制信号)与高频信号(载波信号)进行相互作用,将调制信号的信息转移到载波信号,并形成复合信号,从而在频域上改变其频谱
    的头像 发表于 12-03 17:50 533次阅读

    毫米波雷达与超声波雷达的区别

    毫米波雷达与超声波雷达的区别 现代科技领域,传感器技术扮演着至关重要的角色,尤其是自动驾驶
    的头像 发表于 12-03 17:37 1138次阅读

    毫米波雷达技术优势分析 毫米波雷达安防监控的应用

    毫米波雷达技术优势分析 毫米波雷达作为一种先进的传感器技术,具备多项显著的技术优势: 高精度定位与感知 :
    的头像 发表于 12-03 17:30 569次阅读

    毫米波雷达与激光雷达比较 毫米波雷达自动驾驶作用

    毫米波雷达与激光雷达的比较 毫米波雷达与激光雷达自动驾驶
    的头像 发表于 12-03 17:27 504次阅读

    康谋技术 | 高效环境感知:毫米波雷达数据采集、可视化及存储方案

    自动驾驶技术飞速发展,毫米波雷达因其出色性能已成为自动驾驶传感器套件的关键!本文以4D毫米波雷达
    的头像 发表于 11-06 09:35 3231次阅读
    康谋技术 | 高效环境感知:<b class='flag-5'>毫米波</b><b class='flag-5'>雷达</b>数据采集、可视化及存储方案

    康谋技术 | 毫米波雷达技术解析

    自动驾驶技术飞速发展,毫米波雷达已成为自动驾驶传感器套件的关键。为此,康谋为您深度解析毫米波雷达
    的头像 发表于 10-15 10:07 3250次阅读
    康谋技术 | <b class='flag-5'>毫米波</b><b class='flag-5'>雷达</b>技术解析

    什么是毫米波雷达?毫米波雷达模组选型

    一、什么是毫米波雷达毫米波雷达是一种非接触型的传感器,其工作频率范围涵盖10毫米(30GHz)至1毫米
    的头像 发表于 09-06 17:38 1268次阅读
    什么是<b class='flag-5'>毫米波</b><b class='flag-5'>雷达</b>?<b class='flag-5'>毫米波</b><b class='flag-5'>雷达</b>模组选型

    恩智浦展示汽车毫米波雷达最新解决方案

    凭借全天候的工作能力、较远的探测距离、小型化等优点,毫米波雷达已经成为智能汽车感知层不可或缺的赋能技术。伴随着ADAS和自动驾驶向L2+及更高级别迈进,
    的头像 发表于 08-27 09:25 952次阅读

    FPGA自动驾驶领域有哪些应用?

    的数据处理和预处理,实现实时计算和反馈。 二、数据传输与处理FPGA自动驾驶扮演着数据传输和处理的角色。它能够支持多种传感器(如激光雷达、摄像头、GPS等)的数据传输,并通过其高速
    发表于 07-29 17:09

    基于毫米波雷达的手势识别算法

    新的无线电接入标准,而且是一种潜在的传感工具。毫米波手势识别的研究已经取得了许多成果。实际应用层面,它可以用于汽车行业,以提供 为驾驶员提供安全直观的控制界面。然而,并不是所有坐在车
    发表于 06-05 19:09

    毫米波雷达日常生活的应用

    探测技术,近年来也逐渐渗透到我们的日常生活。这种雷达技术以其独特的优势,如高精度、高分辨率、抗干扰能力强等,民用领域发挥着越来越重要的作用毫米
    的头像 发表于 04-17 08:11 988次阅读
    <b class='flag-5'>毫米波</b><b class='flag-5'>雷达</b><b class='flag-5'>在</b>日常生活<b class='flag-5'>中</b>的应用

    毫米波雷达智能网联汽车的应用

    毫米波雷达(MMW)是一种新型的雷达技术,逐渐智能网联汽车得到广泛应用。它利用
    的头像 发表于 01-31 10:41 3097次阅读

    毫米波雷达作用 毫米波雷达与超声波雷达的区别

    毫米波雷达是一种高频率雷达系统,可以毫米波频段(30-300 GHz)进行物体探测和测距,由于其具有高分辨率、较低的互相干扰和较强的透射穿
    的头像 发表于 01-19 11:14 6800次阅读

    4D毫米波成像雷达的测试要求都有哪些嗯?

    毫米波雷达智能驾驶起到什么作用,这个纯视觉的方案的替代下,引发了我们的思考。4D
    的头像 发表于 01-18 15:54 657次阅读
    4D<b class='flag-5'>毫米波</b>成像<b class='flag-5'>雷达</b>的测试要求都有哪些嗯?