【导读】GMP 模型是让 go 语言轻量快速高效的重要调度模型,本文从 GMP 源码出发直观地解析了这一模型。
这篇文章就来看看 golang 的调度模型-GPM 模型的源码结构。
Go 版本:go1.13.9
M 结构体
M 结构体是 OS 线程的一个抽象,主要负责结合 P 运行 G。它里面有很多字段,差不多有 60 个字段,我们看看里面主要的字段意思。/src/runtime/runtime2.go
Copytype m struct {
// 系统管理的一个 g,执行调度代码时使用的。比如执行用户的 goroutine 时,就需要把把用户
// 的栈信息换到内核线程的栈,以便能够执行用户 goroutine
g0 *g // goroutine with scheduling stack
morebuf gobuf // gobuf arg to morestack
divmod uint32 // div/mod denominator for arm - known to liblink
// Fields not known to debuggers.
procid uint64 // for debuggers, but offset not hard-coded
//处理 signal 的 g
gsignal *g // signal-handling g
goSigStack gsignalStack // Go-allocated signal handling stack
sigmask sigset // storage for saved signal mask
//线程的本地存储 TLS,这里就是为什么 OS 线程能运行 M 关键地方
tls [6]uintptr // thread-local storage (for x86 extern register)
//go 关键字运行的函数
mstartfn func()
//当前运行的用户 goroutine 的 g 结构体对象
curg *g // current running goroutine
caughtsig guintptr // goroutine running during fatal signal
//当前工作线程绑定的 P,如果没有就为 nil
p puintptr // attached p for executing go code (nil if not executing go code)
//暂存与当前 M 潜在关联的 P
nextp puintptr
//M 之前调用的 P
oldp puintptr // the p that was attached before executing a syscall
id int64
mallocing int32
throwing int32
//当前 M 是否关闭抢占式调度
preemptoff string // if != “”, keep curg running on this m
locks int32
dying int32
profilehz int32
//M 的自旋状态,为 true 时 M 处于自旋状态,正在从其他线程偷 G; 为 false,休眠状态
spinning bool // m is out of work and is actively looking for work
blocked bool // m is blocked on a note
newSigstack bool // minit on C thread called sigaltstack
printlock int8
incgo bool // m is executing a cgo call
freeWait uint32 // if == 0, safe to free g0 and delete m (atomic)
fastrand [2]uint32
needextram bool
traceback uint8
ncgocall uint64 // number of cgo calls in total
ncgo int32 // number of cgo calls currently in progress
cgoCallersUse uint32 // if non-zero, cgoCallers in use temporarily
cgoCallers *cgoCallers // cgo traceback if crashing in cgo call
//没有 goroutine 运行时,工作线程睡眠
//通过这个来唤醒工作线程
park note // 休眠锁
//记录所有工作线程的链表
alllink *m // on allm
schedlink muintptr
//当前线程内存分配的本地缓存
mcache *mcache
//当前 M 锁定的 G,
lockedg guintptr
createstack [32]uintptr // stack that created this thread.
lockedExt uint32 // tracking for external LockOSThread
lockedInt uint32 // tracking for internal lockOSThread
nextwaitm muintptr // next m waiting for lock
waitunlockf func(*g, unsafe.Pointer) bool
waitlock unsafe.Pointer
waittraceev byte
waittraceskip int
startingtrace bool
syscalltick uint32
//操作系统线程 id
thread uintptr // thread handle
freelink *m // on sched.freem
// these are here because they are too large to be on the stack
// of low-level NOSPLIT functions.
libcall libcall
libcallpc uintptr // for cpu profiler
libcallsp uintptr
libcallg guintptr
syscall libcall // stores syscall parameters on windows
vdsoSP uintptr // SP for traceback while in VDSO call (0 if not in call)
vdsoPC uintptr // PC for traceback while in VDSO call
dlogPerM
mOS
}
看看几个比较重要的字段:g0:用于执行调度器的 g0gsignal:用于信号处理tls:线程本地存储的 tlsp:goroutine 绑定的本地资源
P 结构体
一个 M 要运行,必须绑定 P 才能运行 goroutine,M 阻塞时,P 会被传给其他 M。
/src/runtime/runtime2.go
Copytype p struct {
//allp 中的索引
id int32
//p 的状态
status uint32 // one of pidle/prunning/。。.
link puintptr
schedtick uint32 // incremented on every scheduler call-》每次 scheduler 调用+1
syscalltick uint32 // incremented on every system call-》每次系统调用+1
sysmontick sysmontick // last tick observed by sysmon
//指向绑定的 m,如果 p 是 idle 的话,那这个指针是 nil
m muintptr // back-link to associated m (nil if idle)
mcache *mcache
raceprocctx uintptr
//不同大小可用 defer 结构池
deferpool [5][]*_defer // pool of available defer structs of different sizes (see panic.go)
deferpoolbuf [5][32]*_defer
// Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
goidcache uint64
goidcacheend uint64
//本地运行队列,可以无锁访问
// Queue of runnable goroutines. Accessed without lock.
runqhead uint32 //队列头
runqtail uint32 //队列尾
//数组实现的循环队列
runq [256]guintptr
// runnext, if non-nil, is a runnable G that was ready‘d by
// the current G and should be run next instead of what’s in
// runq if there‘s time remaining in the running G’s time
// slice. It will inherit the time left in the current time
// slice. If a set of goroutines is locked in a
// communicate-and-wait pattern, this schedules that set as a
// unit and eliminates the (potentially large) scheduling
// latency that otherwise arises from adding the ready‘d
// goroutines to the end of the run queue.
// runnext 非空时,代表的是一个 runnable 状态的 G,
//这个 G 被 当前 G 修改为 ready 状态,相比 runq 中的 G 有更高的优先级。
//如果当前 G 还有剩余的可用时间,那么就应该运行这个 G
//运行之后,该 G 会继承当前 G 的剩余时间
runnext guintptr
// Available G’s (status == Gdead)
//空闲的 g
gFree struct {
gList
n int32
}
sudogcache []*sudog
sudogbuf [128]*sudog
tracebuf traceBufPtr
// traceSweep indicates the sweep events should be traced.
// This is used to defer the sweep start event until a span
// has actually been swept.
traceSweep bool
// traceSwept and traceReclaimed track the number of bytes
// swept and reclaimed by sweeping in the current sweep loop.
traceSwept, traceReclaimed uintptr
palloc persistentAlloc // per-P to avoid mutex
_ uint32 // Alignment for atomic fields below
// Per-P GC state
gcAssistTime int64 // Nanoseconds in assistAlloc
gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker (atomic)
gcBgMarkWorker guintptr // (atomic)
gcMarkWorkerMode gcMarkWorkerMode
// gcMarkWorkerStartTime is the nanotime() at which this mark
// worker started.
gcMarkWorkerStartTime int64
// gcw is this P‘s GC work buffer cache. The work buffer is
// filled by write barriers, drained by mutator assists, and
// disposed on certain GC state transitions.
gcw gcWork
// wbBuf is this P’s GC write barrier buffer.
//
// TODO: Consider caching this in the running G.
wbBuf wbBuf
runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point
pad cpu.CacheLinePad
}
其他的一些字段就是 gc,trace,debug 信息
G 结构体
G 就是 goroutine。主要保存 goroutine 的所有信息以及栈信息,gobuf 结构体:cpu 里的寄存器信息,以便在轮到本 goroutine 执行时,知道从哪里开始执行。
/src/runtime/runtime2.go
Copytype stack struct {
lo uintptr //栈顶,指向内存低地址
hi uintptr //栈底,指向内存搞地址
}
type g struct {
// Stack parameters.
// stack describes the actual stack memory: [stack.lo, stack.hi)。
// stackguard0 is the stack pointer compared in the Go stack growth prologue.
// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
// stackguard1 is the stack pointer compared in the C stack growth prologue.
// It is stack.lo+StackGuard on g0 and gsignal stacks.
// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash)。
// 记录该 goroutine 使用的栈
stack stack // offset known to runtime/cgo
//下面两个成员用于栈溢出检查,实现栈的自动伸缩,抢占调度也会用到 stackguard0
stackguard0 uintptr // offset known to liblink
stackguard1 uintptr // offset known to liblink
_panic *_panic // innermost panic - offset known to liblink
_defer *_defer // innermost defer
// 此 goroutine 正在被哪个工作线程执行
m *m // current m; offset known to arm liblink
//这个字段跟调度切换有关,G 切换时用来保存上下文,保存什么,看下面 gobuf 结构体
sched gobuf
syscallsp uintptr // if status==Gsyscall, syscallsp = sched.sp to use during gc
syscallpc uintptr // if status==Gsyscall, syscallpc = sched.pc to use during gc
stktopsp uintptr // expected sp at top of stack, to check in traceback
param unsafe.Pointer // passed parameter on wakeup,wakeup 唤醒时传递的参数
// 状态 Gidle,Grunnable,Grunning,Gsyscall,Gwaiting,Gdead
atomicstatus uint32
stackLock uint32 // sigprof/scang lock; TODO: fold in to atomicstatus
goid int64
//schedlink 字段指向全局运行队列中的下一个 g,
//所有位于全局运行队列中的 g 形成一个链表
schedlink guintptr
waitsince int64 // approx time when the g become blocked
waitreason waitReason // if status==Gwaiting,g 被阻塞的原因
//抢占信号,stackguard0 = stackpreempt,如果需要抢占调度,设置 preempt 为 true
preempt bool // preemption signal, duplicates stackguard0 = stackpreempt
paniconfault bool // panic (instead of crash) on unexpected fault address
preemptscan bool // preempted g does scan for gc
gcscandone bool // g has scanned stack; protected by _Gscan bit in status
gcscanvalid bool // false at start of gc cycle, true if G has not run since last scan; TODO: remove?
throwsplit bool // must not split stack
raceignore int8 // ignore race detection events
sysblocktraced bool // StartTrace has emitted EvGoInSyscall about this goroutine
sysexitticks int64 // cputicks when syscall has returned (for tracing)
traceseq uint64 // trace event sequencer
tracelastp puintptr // last P emitted an event for this goroutine
// 如果调用了 LockOsThread,那么这个 g 会绑定到某个 m 上
lockedm muintptr
sig uint32
writebuf []byte
sigcode0 uintptr
sigcode1 uintptr
sigpc uintptr
// 创建这个 goroutine 的 go 表达式的 pc
gopc uintptr // pc of go statement that created this goroutine
ancestors *[]ancestorInfo // ancestor information goroutine(s) that created this goroutine (only used if debug.tracebackancestors)
startpc uintptr // pc of goroutine function
racectx uintptr
waiting *sudog // sudog structures this g is waiting on (that have a valid elem ptr); in lock order
cgoCtxt []uintptr // cgo traceback context
labels unsafe.Pointer // profiler labels
timer *timer // cached timer for time.Sleep, 为 time.Sleep 缓存的计时器
selectDone uint32 // are we participating in a select and did someone win the race?
// Per-G GC state
// gcAssistBytes is this G‘s GC assist credit in terms of
// bytes allocated. If this is positive, then the G has credit
// to allocate gcAssistBytes bytes without assisting. If this
// is negative, then the G must correct this by performing
// scan work. We track this in bytes to make it fast to update
// and check for debt in the malloc hot path. The assist ratio
// determines how this corresponds to scan work debt.
gcAssistBytes int64
}
gobuf
gobuf 结构体用于保存 goroutine 的调度信息,主要包括 CPU 的几个寄存器的值。
/src/runtime/runtime2.go
Copytype gobuf struct {
// The offsets of sp, pc, and g are known to (hard-coded in) libmach.
//
// ctxt is unusual with respect to GC: it may be a
// heap-allocated funcval, so GC needs to track it, but it
// needs to be set and cleared from assembly, where it’s
// difficult to have write barriers. However, ctxt is really a
// saved, live register, and we only ever exchange it between
// the real register and the gobuf. Hence, we treat it as a
// root during stack scanning, which means assembly that saves
// and restores it doesn‘t need write barriers. It’s still
// typed as a pointer so that any other writes from Go get
// write barriers.
sp uintptr // 保存 CPU 的 rsp 寄存器的值
pc uintptr // 保存 CPU 的 rip 寄存器的值
g guintptr // 记录当前这个 gobuf 对象属于哪个 goroutine
ctxt unsafe.Pointer
//保存系统调用的返回值,因为从系统调用返回之后如果 p 被其它工作线程抢占,
//则这个 goroutine 会被放入全局运行队列被其它工作线程调度,其它线程需要知道系统调用的返回值。
ret sys.Uintreg // 保存系统调用的返回值
lr uintptr
//保存 CPU 的 rip 寄存器的值
bp uintptr // for GOEXPERIMENT=framepointer
}
调度器 sched 结构
所有的 gorouteine 都是被调度器调度运行,调度器持有全局资源
sched
/src/runtime/runtime2.go
Copytype schedt struct {
// accessed atomically. keep at top to ensure alignment on 32-bit systems.
// 需以原子访问访问。
// 保持在 struct 顶部,以使其在 32 位系统上可以对齐
goidgen uint64
lastpoll uint64
lock mutex
// When increasing nmidle, nmidlelocked, nmsys, or nmfreed, be
// sure to call checkdead()。
//由空闲的工作线程组成的链表
midle muintptr // idle m‘s waiting for work
//空闲的工作线程的数量
nmidle int32 // number of idle m’s waiting for work
//空闲的且被 lock 的 m 计数
nmidlelocked int32 // number of locked m‘s waiting for work
//已经创建的多个 m,下一个 m id
mnext int64 // number of m’s that have been created and next M ID
//被允许创建的最大 m 线程数量
maxmcount int32 // maximum number of m‘s allowed (or die)
nmsys int32 // number of system m’s not counted for deadlock
//累积空闲的 m 数量
nmfreed int64 // cumulative number of freed m‘s
//系统 goroutine 的数量,自动更新
ngsys uint32 // number of system goroutines; updated atomically
//由空闲的 p 结构体对象组成的链表
pidle puintptr // idle p’s
//空闲的 p 结构体对象的数量
npidle uint32
nmspinning uint32 // See “Worker thread parking/unparking” comment in proc.go.
// Global runnable queue.
//全局运行队列 G 队列
runq gQueue //这个结构体在 proc.go 里
//元素数量
runqsize int32
// disable controls selective disabling of the scheduler.
//
// Use schedEnableUser to control this.
//
// disable is protected by sched.lock.
disable struct {
// user disables scheduling of user goroutines.
user bool
runnable gQueue // pending runnable Gs
n int32 // length of runnable
}
// Global cache of dead G‘s. 有效 dead G 全局缓存
gFree struct {
lock mutex
stack gList // Gs with stacks
noStack gList // Gs without stacks
n int32
}
// Central cache of sudog structs. dusog 结构的集中缓存
sudoglock mutex
sudogcache *sudog
// Central pool of available defer structs of different sizes. 不同大小有效的 defer 结构的池
deferlock mutex
deferpool [5]*_defer
// freem is the list of m’s waiting to be freed when their
// m.exited is set. Linked through m.freelink.
freem *m
gcwaiting uint32 // gc is waiting to run
stopwait int32
stopnote note
sysmonwait uint32
sysmonnote note
// safepointFn should be called on each P at the next GC
// safepoint if p.runSafePointFn is set.
safePointFn func(*p)
safePointWait int32
safePointNote note
profilehz int32 // cpu profiling rate
procresizetime int64 // nanotime() of last change to gomaxprocs
totaltime int64 // ∫gomaxprocs dt up to procresizetime
}
gQueue
/src/runtime/proc.go
Copytype gQueue struct {
head guintptr //队列头
tail guintptr //队列尾
}
一些重要全局变量
/src/runtime/proc.go
Copym0 m //代表主线程
g0 g //m0 绑定的 g0,也就是 M 结构体中 m0.g0=&g0
allgs []*g //保存所有的 g
/src/runtime/runtime2.go
Copyallm *m //所有的 m 构成的一个链表,包括上面的 m0
allp []*p //保存所有的 p, len(allp) == gomaxprocs
sched schedt //调度器的结构体,保存了调度器的各种信息
ncpu int32 //系统 cpu 核的数量,程序启动时由 runtime 初始化
gomaxprocs int32 //p 的最大数量,默认等于 ncpu,可以通过 GOMAXPROCS 修改
在程序初始化时,这些变量都会被初始化为 0 值,指针会被初始化为 nil 指针,切片初始化为 nil 切片,int 被初始化为数字 0,结构体的所有成员变量按其本类型初始化为其类型的 0 值。
调度器初始化
调度器初始化有一个主要的函数 schedinit(), 这个函数在 /src/runtime/proc.go 文件中。函数开头还把初始化的顺序给列出来了:
// The bootstrap sequence is://// call osinit// call schedinit// make & queue new G// call runtime·mstart//// The new G calls runtime·main.
Copyfunc schedinit() {
// raceinit must be the first call to race detector.
// In particular, it must be done before mallocinit below calls racemapshadow.
_g_ := getg() //getg() 在 src/runtime/stubs.go 中声明,真正的代码由编译器生成
if raceenabled {
_g_.racectx, raceprocctx0 = raceinit()
}
//设置最大 M 的数量
sched.maxmcount = 10000
tracebackinit()
moduledataverify()
//初始化栈空间常用管理链表
stackinit()
mallocinit()
//初始化当前 m
mcommoninit(_g_.m)
cpuinit() // must run before alginit
alginit() // maps must not be used before this call
modulesinit() // provides activeModules
typelinksinit() // uses maps, activeModules
itabsinit() // uses activeModules
msigsave(_g_.m)
initSigmask = _g_.m.sigmask
goargs()
goenvs()
parsedebugvars()
gcinit()
sched.lastpoll = uint64(nanotime())
// 把 p 数量从 1 调整到默认的 CPU Core 数量
procs := ncpu
if n, ok := atoi32(gogetenv(“GOMAXPROCS”)); ok && n 》 0 {
procs = n
}
//调整 P 数量
//这里的 P 都是新建的,所以不返回有本地任务的 p
if procresize(procs) != nil {
throw(“unknown runnable goroutine during bootstrap”)
}
// For cgocheck 》 1, we turn on the write barrier at all times
// and check all pointer writes. We can‘t do this until after
// procresize because the write barrier needs a P.
if debug.cgocheck 》 1 {
writeBarrier.cgo = true
writeBarrier.enabled = true
for _, p := range allp {
p.wbBuf.reset()
}
}
if buildVersion == “” {
// Condition should never trigger. This code just serves
// to ensure runtime·buildVersion is kept in the resulting binary.
buildVersion = “unknown”
}
if len(modinfo) == 1 {
// Condition should never trigger. This code just serves
// to ensure runtime·modinfo is kept in the resulting binary.
modinfo = “”
}
}
开头的这个函数 getg(),跳转到了 func getg() *g ,定义这么一个形式,什么意思?函数首先调用 getg() 函数获取当前正在运行的 g,getg() 在 src/runtime/stubs.go 中声明,真正的代码由编译器生成。
Copy// getg returns the pointer to the current g.// The compiler rewrites calls to this function into instructions// that fetch the g directly (from TLS or from the dedicated register).func getg() *g
注释里也说了,getg 返回当前正在运行的 goroutine 的指针,它会从 tls 里取出 tls[0],也就是当前运行的 goroutine 的地址。编译器插入类似下面的代码:
Copyget_tls(CX)
MOVQ g(CX), BX; // BX 存器里面现在放的是当前 g 结构体对象的地址
原来是这么个意思。
调度器初始化大致过程:M 初始化 --》 P 初始化 - -》 G 初始化mcommoninit Procresize newproc-------------------------------------------------------allm 池 allp 池 g.sched 执行现场p.runq 调度队列
M/P/G 初始化:mcommoninit、procresize、newproc,他们负责 M 资源池(allm)、p 资源池(allp)、G 的运行现场(g.sched) 以及调度队列(p.runq)
调度循环
所有的工作初始化完成后,就要启动运行器了。准备工作做好了,就要启动 mstart 了。这个工作在汇编语言中也可以看出来
/src/runtime/asm_amd64.s (在 linux 下)
CopyTEXT runtime·rt0_go(SB),NOSPLIT,$0
。。. 。。. 。。.
MOVL 16(SP), AX // copy argc
MOVL AX, 0(SP)
MOVQ 24(SP), AX // copy argv
MOVQ AX, 8(SP)
CALL runtime·args(SB)
CALL runtime·osinit(SB) //OS 初始化
CALL runtime·schedinit(SB) //调度器初始化
// create a new goroutine to start program
MOVQ $runtime·mainPC(SB), AX // entry
PUSHQ AX
PUSHQ $0 // arg size
CALL runtime·newproc(SB) // G 初始化
POPQ AX
// start this M , 启动 M
CALL runtime·mstart(SB)
CALL runtime·abort(SB) // mstart should never return
RET
转自:九卷
cnblogs.com/jiujuan/p/12977832.html
编辑:jq
-
GMP
+关注
关注
0文章
11浏览量
8973 -
源码
+关注
关注
8文章
641浏览量
29208 -
代码
+关注
关注
30文章
4788浏览量
68609
原文标题:深入理解 Go scheduler 调度器:GPM 源码分析
文章出处:【微信号:LinuxHub,微信公众号:Linux爱好者】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论