0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于发线虫神经学及 微型机器人相关研究

h1654155149.6853 来源:智东西 作者:智东西 2021-07-07 11:43 次阅读

给一个活体生物躯体注入机器的“大脑”,然后人为控制该生物的行为,已经从科幻片走入现实世界。

近日,国际机器人学术顶刊Science Robotics上最新发表的一篇新论文,描述了一种用机器视觉、运动控制和导航等算法取代线虫大脑、精密操控活体线虫运动的新方法,创造出一个不受束缚的、高度可控的微型软体机器人,并将其命名为RoboWorm。

该论文题目为《通过光遗传运动控制秀丽隐杆线虫,实现活的微型软体机器人》(Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans),由加拿大多伦多大学机械工业化学院与Lunenfeld-Tanenbaum研究所合作完成。

“生物本身即最完美的机器人。”论文第一作者董先科博士告诉智东西,从机器人学的角度,这一研究相当于做了一个微米尺度的蛇形机器人,只不过用了生物本身的肌肉细胞作为执行器,这使得微型机器人变得更加灵巧,也更像真正意义上的机器人。

01.破解微型机器人的运动控制技术瓶颈

学习自然生物的运动是设计微型机器人最有效的策略之一。得益于数百万年的进化,生物们发展了复杂的身体结构、高效的能量流动和先进的运动控制系统,这些系统超过了任何人造机器。这些生物的特性,为各种微型机器人的设计提供了巨大的灵感。

微型机器人领域在MEMS技术以及光刻蚀技术的迭代之下,近十年来有长足的发展,并逐步在靶向给药、测量细胞器模量、辅助精子移动人工受孕等场景尝试应用。然而,与自然模型相比,生物启发的微型机器人的结构通常被大幅简化,以促进微型机器人的制造和驱动。

因此,这种微型机器人的性能无法与生物体相提并论。人类若想真正制造尺寸在数百微米乃至数微米的受控微型机器人,目前条件下,仍然存在诸多技术瓶颈。比如在工艺方面,主要瓶颈在于如何制造装和配微型机器人,如何给这么小的机器人供能。

在原理瓶颈方面,微米环境里粘滞力和摩擦力比重力大几个数量级,用什么结构驱动微型机器人运动,以完成既定任务。在控制方面,如何测量微型机器人的运动,构成闭环,如何对这么小的机器人实现精密控制等等,都是当前研究面临的挑战。现阶段学术界开发的微型机器人构造相对简单,多为简单的、能直接用光刻蚀技术加工的微结构体,如微纳米磁块、微米螺旋体、微米管等。操控性和功能大都比较有限。

而如果结构过于复杂,在微米尺度下,它们即使能够加工出来也很难装配。针对这些瓶颈问题,此次在Science Robotics上发表的新论文,提出了一种相当有“脑洞”的解决方案:用机器视觉、运动控制和导航算法替代生物的大脑,重构生物的感官运动系统,人为控制活体生物的运动,直接将微米级生物开发为受控微型机器人,以完成微米环境下的特定任务。

02.结合机器视觉算法,精密控制活体线虫这项研究选择的生物对象是秀丽隐杆线虫。秀丽隐杆线虫是生物学中唯一一个神经元连接映射图被完全揭示的模型生物,身体透明,成年体长度约1毫米,宽度约80微米,身体里一共302个神经元。关于秀丽隐杆线虫的研究分别在2002、2006、2008年产生了三个诺贝尔奖。

作为一种软体生物,线虫的身体每个地方都能弯曲,拥有无限自由度。近年来,随着人工神经网络的发展,人们对生物本体的神经系统信号传递处理的机理剖析有更迫切的需求。秀丽隐杆线虫也成为神经生物学甚至人工智能学科的研究热点之一。通过一系列生物化学以及工程手段,该研究将活的线虫变成了可以人为精密控制的微型机器人。

首先,研究者用化学方法阻断了线虫的运动神经元与肌肉细胞组的信息传递,将线虫的神经系统暂时麻醉,使得现场仍然是活的,但它的大脑无法向肌肉传达运动指令,即无法控制自身运动。

然后,通过机器视觉算法实时分析线虫的形态和周围的环境,分析结果,在进一步建模和控制算法综合之后,用光遗传学的方法,操纵微米激光束精密协调控制肌肉细胞组群的活动,实现线虫整体的闭环运动控制。从而用算法取代线虫的“大脑”,重构线虫感官运动系统对身体的控制。

具体而言,考虑到照明光强、显微镜聚焦状态、虫子大小等干扰因素,研究人员采集了几千张自然状态的虫子连续爬行的照片,在此基础上设计机器视觉算法。据董先科介绍,该算法在普通的笔记本电脑上也能实现50fps的速度,相关代码已公开。

然后,控制算法会根据机器视觉算法测量的物理状态,计算当前时刻需要用多大的激光强度,来激活或抑制哪组肌肉细胞,从而操纵线虫向设定的位置移动。为了精密的协调控制肌肉收缩,需要激光束有细胞级的精度。为此,研究人员改装了一台倒置显微镜,并且在上面搭建了一个激光投影系统。

该系统用数字微型器件DMD反射473nm的蓝色激光束,搭建一些光学元件让激光束透过显微镜物镜缩小上百倍,然后聚焦在线虫身上,最后通过给DMD编程来控制激活或抑制哪些肌肉细胞。目前这个系统能够达到3微米的投影精度,基本可以实现对单个肌肉细胞的光遗传学操控。

研究者在这种人为改造的活体机器人上,设计算法实现了线虫在自然状态下被观察到的所有五种运动模式,并赋予了自然状态下线虫没有的“全局视觉”:通过运动控制和导航算法,精密操纵线虫机器人避障,一次性通过迷宫。

03.为新型蛇形机器人研究提供新思路

论文第一作者董先科是一位90后青年学者,2012年在哈尔滨工业大学航天学院自动化专业完成本科学习,2014-2019年在加拿大麦吉尔大学机械工程系获得博士学位,主攻机器视觉、微型机器人,以及机器人精密操作研究方向。自2019年至今,董先科在加拿大多伦多一家科技公司任算法研发工程师,负责嵌入式高帧率目光跟踪系统的算法开发,以及在医疗AR和辅助驾驶场景的应用。此前他曾以第一作者身份获得机器人领域顶级学术会议ICRA 2015的最佳会议论文提名奖和最佳自动化论文提名奖。

他介绍道,微米环境下,由于物理定律的尺度缩小效应,粘滞力和摩擦力比重力要大几个数量级。因此微米环境下的自主运动模式,比如细菌的鞭毛运动、精子的游泳运动、线虫的蛇形运动等,与日常宏观运动模式有很大区别。生物拥有灵巧的身体和对环境的高度适应,具有可靠和高效的天然属性。将微米环境里生活的生物改造为微型机器人,是微型机器人领域的全新思路,也对日后人造微型机器人提供了前瞻性研究。

目前广义蛇形机器人的开发往往将其等价为串联杆件模型,用拉格朗日方程进行刚体建模。但这种传统方法忽略了机器人和环境复杂的力学交互,因此蛇形机器人运动速度和效率往往不高。本文通过建模仿真以及一系列实验,揭示了线虫在蛇形运动过程中肌肉的活性部位与身体的曲率之间存在相位差,并从理论和实验两方面验证了此相位差是驱动线虫蛇形爬行的运动模式的原因。该成果对新型蛇形机器人的设计建模与控制有重要的指导意义。

最后,本文示范了用微米激光束精密操控肌肉细胞活性的实验。此方法对其他生物瘫痪疾病的治疗也有启示意义。在这项研究中,研究团队做了很多基础的动力学研究,研究微米下的“蛇”如何爬动。也许将来某一天能以此为基础,做出人造的微米蛇形机器人,将之放到人的血管或者消化道里为人治病。

董先科说,他接下来的研究计划是进一步设计尺寸稍大的人造蛇形机器人,然后用现在做出来的模型进行控制,因为更多地考虑到了机器人和环境的力学交互,预想可能提升很多方面的性能。另一方面,这个线虫机器人可以作为一个研究线虫神经学的极佳平台,比如研究这个只有302个神经元的模型生物有没有习惯性记忆,或者怎么构成习惯性记忆。据他透露,有一些与线虫生物学家合作的课题正在开展。

04.结语:或启发线虫神经学及微型机器人相关研究

由于生物神经系统的工程或重新设计具有挑战性,再加上缺乏准确描述生物行为的生物力学模型,大多数生物混合微型机器人的设计仅涉及简单的生物组件,不具备在运动期间协调这些驱动组件的身体级智能。总体来看,这项将活线虫转化为微型软体机器人的新研究,为秀丽隐杆线虫及其他线虫的神经学研究提供了一个极佳的平台,亦对微米尺度下机器人的开发亦提供了开创性的思路。结合肌肉活性的荧光成像,该研究还对微米尺度下蛇形运动的动力学研究有示范意义。

论文链接:https://robotics.sciencemag.org/content/6/55/eabe3950

开源地址:https://github.com/BionDong/worm-locomotion-feature-analysis
编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    210

    文章

    28180

    浏览量

    206331
  • 机器视觉
    +关注

    关注

    161

    文章

    4340

    浏览量

    120080
  • 代码
    +关注

    关注

    30

    文章

    4741

    浏览量

    68323
  • 微型
    +关注

    关注

    0

    文章

    24

    浏览量

    17783
  • DMD
    DMD
    +关注

    关注

    3

    文章

    54

    浏览量

    30505

原文标题:科幻变现实:用机器“大脑”操纵活线虫运动!

文章出处:【微信号:电子工程世界,微信公众号:电子工程世界】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于漩涡湍流辅助的微流控平台,可实现类精子结构的微型机器人一步成型

    团队提出了一种基于漩涡湍流辅助的微流控平台(VTAM),可实现类精子结构的微型机器人一步成型,配合外部磁场驱动为药物递送提供了新的载体。该研究团队进一步将微游动器导入生物体模拟环境,并在特定位置释放药物,展示了这种新型微游动机器人
    的头像 发表于 11-12 09:56 209次阅读
    基于漩涡湍流辅助的微流控平台,可实现类精子结构的<b class='flag-5'>微型机器人</b>一步成型

    【书籍评测活动NO.51】具身智能机器人系统 | 了解AI的下一个浪潮!

    的互动形成。 随着具身智能机器人技术的快速发展,相关人才的需求也在不断增加,为了帮助大家系统性地总结和分析当前具身智能机器人系统的发展现状和前沿研究,为未来的
    发表于 11-11 10:20

    医疗机器人有哪些_医疗机器人有哪些应用

    医疗机器人是医用机器人工程的重要应用,结合了各个学科最新研究和发展的成果,并广泛应用于医学诊疗、康复等医学领域。医疗机器人的类型多种多样,以下是主要的一些类型:
    的头像 发表于 10-21 15:16 640次阅读

    微型导轨滑块在机器人领域的双重优势!

    微型导轨滑块作为机器人中的关键部件,发挥着支撑、定位和导向等重要作用。
    的头像 发表于 09-10 17:50 576次阅读
    <b class='flag-5'>微型</b>导轨滑块在<b class='flag-5'>机器人</b>领域的双重优势!

    机器人神经网络系统的特点包括

    脑启发的计算模型,具有高度的并行性和自适应性。机器人神经网络系统是将神经网络技术应用于机器人领域的研究和应用,具有以下特点: 高度的复杂性:
    的头像 发表于 07-09 09:45 335次阅读

    机器人神经网络控制原理是什么

    ,虽然在某些应用场景下取得了较好的效果,但在面对复杂、不确定和动态变化的环境时,其性能往往受到限制。神经网络作为一种模拟人脑神经元网络的计算模型,具有强大的非线性映射能力和自适应学习能力,被广泛应用于机器人控制领域
    的头像 发表于 07-09 09:40 352次阅读

    Al大模型机器人

    丰富的知识储备。它们可以涵盖各种领域的知识,并能够回答相关问题。灵活性与通用性: AI大模型机器人具有很强的灵活性和通用性,能够处理各种类型的任务和问题。持续学习和改进: 这些模型可以通过持续的训练
    发表于 07-05 08:52

    「探索」康复机器人神经康复中的应用

    随着社会的发展和人口老龄化的加剧,神经性疾病的患者数量逐年上升。神经康复作为提高患者生活质量、恢复神经功能的重要手段,正面临着巨大的挑战。康复机器人作为一种新兴的辅助技术,在我国得到了
    的头像 发表于 07-02 10:25 290次阅读
    「探索」康复<b class='flag-5'>机器人</b>在<b class='flag-5'>神经</b>康复中的应用

    微型导轨:手术机器人的高精度“骨骼”

    微型导轨精度高,摩擦系数小,自重轻,结构紧凑,被广泛应用在医疗器械中,尤其是在手术机器人中的应用,通过手术机器人,外科医生可以远离手术台操纵机器人进行手术。
    的头像 发表于 06-25 17:57 748次阅读
    <b class='flag-5'>微型</b>导轨:手术<b class='flag-5'>机器人</b>的高精度“骨骼”

    捷克研发微型机器人,捕获水中塑料废物及细菌

    微塑料的尺寸通常小于5毫米,易被动物误食,进而影响整个生态系统。此外,微塑料还可能吸附各类细菌,增加生物健康风险。为此,捷克布尔诺理工大学开发了一套微型机器人系统,以应对这一挑战。
    的头像 发表于 05-11 17:09 935次阅读

    视觉机器人焊接的研究现状

    视觉机器人焊接技术是将计算机视觉与机器人技术相结合,实现自动焊接过程中的实时检测、跟踪和控制。这一领域的研究一直处于不断发展之中,吸引了众多研究人员和工程师的关注。本文将就视觉
    的头像 发表于 04-02 15:34 480次阅读
    视觉<b class='flag-5'>机器人</b>焊接的<b class='flag-5'>研究</b>现状

    面向狭窄腔道医疗作业的微型机器人

    随着人工智能的发展,医疗手术机器人现如今已走进现实生活,当机器人需要进入体内进行介入治疗时,面向狭窄腔道医疗作业的微型机器人可以从多级狭窄腔道深入诊疗
    发表于 01-19 11:47 333次阅读

    LabVIEW的六轴工业机器人运动控制系统

    。 系统研究与算法开发:首先,项目围绕机器人的数学模型,特别是空间位姿描述和D-H模型展开研究。在此基础上,开发了机器人的运动学正反解算法,使用了雅克比-迭代法等先进技术。此外,还涉及
    发表于 12-21 20:03

    微型5G智能网关助力打造智能清洁机器人

    针对清洁机器人应用,可以选用微型5G智能网关方案,为机器人提供高速、低延时的5G通信和5G远程管理能力,支撑机器人更高效地进行清洁工作。
    的头像 发表于 12-08 17:52 439次阅读
    <b class='flag-5'>微型</b>5G智能网关助力打造智能清洁<b class='flag-5'>机器人</b>

    机器人的态势感知成为行业研究热点

    新一代机器人的态势感知将成为研究的热点和难点。通过解决环境感知、自身状态感知和多传感器融合等问题,可以提高机器人的自主性、可靠性和适应性,从而推动机器人技术的发展。一般而言,要实现传统
    发表于 12-05 11:30 352次阅读