0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PyTorch1.8和Tensorflow2.5该如何选择?

阿铭linux 来源:towards data science 作者:Mostafa Ibrahim 2021-07-09 10:33 次阅读

深度学习重新获得公认以来,许多机器学习框架层出不穷,争相成为研究人员以及行业从业人员的新宠。从早期的学术成果 Caffe、Theano,到获得庞大工业支持的 PyTorch、TensorFlow,许多研究者面对大量的学习框架不知该如何选择?

Tensorflow / Keras 和 PyTorch 是迄今为止最受欢迎的两个主要机器学习库。TensorFlow 由谷歌团队开发,于 2015 年发布。而 PyTorch 则由 Facebook 的团队开发,并于 2017 年在 GitHub 上开源。

为了充分发挥不同机器学习框架的优势,许多机器学习从业者对不同框架进行了比较,通过对比优缺点,以选择最适合自己的框架。

在本文中,我们将从以下两个方面对机器学习库(PyTorch 1.8 和 Tensorflow 2.5)进行比较:

最新发行版本中的新增功能;

使用哪个以及为什么。

Tensorflow 2.x VS Pytorch 1.8

Tensorflow 2.x

TensorFlow 1 和 TensorFlow 2.x 之间有很多变化。第一个是 Tensorflow.js. 的发布。随着 Web 应用程序越来越占主导地位,在浏览器上部署模型的需求大大增加。借助 Tensorflow.js,你可以使用 Node 在浏览器中运行现有的 python 模型、重新训练现有的模型,并使用 Javascript 完全构建和训练模型(不需要 python)。

Tensorflow 2.x 中的另一个版本是 Tensorflow Lite,一个轻量级库,用于在移动和嵌入式设备上部署模型。这是因为移动和 Web 应用程序是两种最主要的应用程序类型。

使用 Tensorflow Lite,你可以简单地将现有模型转换为「compressed flat buffer」,然后将 buffer 加载到移动设备或任何其他嵌入式设备中。这期间发生的主要优化过程是将 32 位浮点值转换成 8 位,这更适合于嵌入式设备(更少的内存使用)。

此外还包括 Tensorflow Extended(TFX)的发布,它是用于部署生产 ML pipeline 的端到端平台。其在机器学习的 3 个最重要领域(web 应用程序、移动应用程序和生产管理)方面做得很好。

机器学习生产 pipeline 仍需要大量研究和开发。TFX 可以应对经典的软件生产挑战,例如可扩展性、可维护性和模块化。此外,它还可以帮助解决机器学习的特定挑战,例如持续在线学习、数据验证,数据管理等。

PyTorch 1.8

与 Tensorflow Lite 相似,PyTorch 改进了其现有的 Pytorch Mobile。该框架可以量化、跟踪、优化和保存适用于 AndroidiOS 的模型。此外还发布了 Pytorch Lite Interpreter 的原型,该原型可减小移动设备上二进制运行时的大小。

此外,还通过更具体的错误处理和 pipeline 并行为分布式训练提供了更多支持。Pytorch Profiler 用于分析 APP、模型的执行时间、执行流程、内存消耗等。

尽管 Pytorch lightning 不是 PyTorch 1.8 的一部分,但还是值得一提。Pytorch lightning 已发布,可以使编码神经网络更加简单。可以将其视为 Pytorch 的 Keras,使用广泛,其中的原因可归结为 Keras 显著的改进了 Tensorflow,因为它使实现模型变得更加容易和快捷。在 Pytorch 中,Pytorch lightning 起到了相同的作用。

该如何选择?

从本质上讲,这两个库都是相当不错的,它们在性能和功能上非常接近。总的来说,两个库之间的编码风格有所不同。

PyTorch 以其 OOP(面向对象编程)风格而闻名。例如,当创建自定义模型或自定义数据集时,你很可能会创建一个新类,该类继承默认的 PyTorch 库,然后在进行代码调整。尽管 OOP 以某种方式为代码提供了一种结构,但就代码行数而言,会使代码变得很长。

另一方面,当使用 Tensorflow 时,你很可能会使用 Keras。例如在进行 Kaggle 比赛时(监督学习图像分类、目标检测、图像分割、NLP 等任务),可以发现 Keras 的代码实现比 PyTorch 短。作为初学者 / 中级人员,这是非常不错的选择,因为你不必花费大量时间阅读和分解代码行。

在某些情况下,需要在特定的机器学习领域中寻找特定的模型。例如,当进行目标检测比赛时,想要实现 DETR(Facebook 的 Data-Efficient transformer),结果发现大部分资源都是用 PyTorch 编写的,因此在这种情况下,使用 PyTorch 更加容易。

另外,PyTorch 的代码实现更长,因为它们涵盖了许多底层细节。这既是优点也是缺点。当你是初学者时先学习低层级的细节,然后再使用更高层级的 API(例如 Keras)非常有帮助。但是,这同时也是一个缺点,因为你会发现自己迷失于许多细节和相当长的代码段中。因此,从本质上讲,如果你的工作期限很紧,最好选择 Keras 而不是 PyTorch。

原文链接:https://towardsdatascience.com/pytorch-vs-tensorflow-2021-d403504d7bc3

文章转自机器之心

(版权归原作者所有,侵删)

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pytorch
    +关注

    关注

    2

    文章

    808

    浏览量

    13645

原文标题:PyTorch 1.8 和 Tensorflow 2.5,我该用哪个?

文章出处:【微信号:aming_linux,微信公众号:阿铭linux】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    相关推荐

    操作指南:pytorch云服务器怎么设置?

    设置PyTorch云服务器需选择云平台,创建合适的GPU实例,安装操作系统、Python及Anaconda,创建虚拟环境,根据CUDA版本安装PyTorch,配置环境变量,最后验证安装。过程中需考虑
    的头像 发表于 02-08 10:33 236次阅读

    PyTorch 数据加载与处理方法

    ,数据加载主要依赖于 torch.utils.data 模块,模块提供了 Dataset 和 DataLoader 两个核心类。 1.1 Dataset 类 Dataset 类是 PyTorch 中所
    的头像 发表于 11-05 17:37 729次阅读

    使用PyTorch在英特尔独立显卡上训练模型

    PyTorch 2.5重磅更新:性能优化+新特性》中的一个新特性就是:正式支持在英特尔独立显卡上训练模型!
    的头像 发表于 11-01 14:21 1557次阅读
    使用<b class='flag-5'>PyTorch</b>在英特尔独立显卡上训练模型

    新手小白怎么通过云服务器跑pytorch

    安装PyTorch的步骤可以根据不同的操作系统和需求有所差异,通过云服务器运行PyTorch的过程主要包括选择GPU云服务器平台、配置服务器环境、部署和运行PyTorch模型、优化性能
    的头像 发表于 09-25 11:35 450次阅读

    pytorch怎么在pycharm中运行

    PyTorch。以下是安装PyTorch的步骤: 打开终端或命令提示符。 根据你的系统和需求,选择适当的安装命令。例如,如果你使用的是Python 3.8和CUDA 10.2,可以使用以下命令: pip
    的头像 发表于 08-01 16:22 2021次阅读

    TensorFlow是什么?TensorFlow怎么用?

    TensorFlow是由Google开发的一个开源深度学习框架,它允许开发者方便地构建、训练和部署各种复杂的机器学习模型。TensorFlow凭借其高效的计算性能、灵活的架构以及丰富的工具和库,在学
    的头像 发表于 07-12 16:38 1061次阅读

    pytorch中有神经网络模型吗

    处理、语音识别等领域取得了显著的成果。PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。它以其易用性、灵活性和高效性而受到广泛欢迎。在PyTorch中,有许多预训练的神经网络模型可供选择,这些模型可以
    的头像 发表于 07-11 09:59 1242次阅读

    PyTorch的介绍与使用案例

    PyTorch是一个基于Python的开源机器学习库,它主要面向深度学习和科学计算领域。PyTorch由Meta Platforms(原Facebook)的人工智能研究团队开发,并逐渐发展成为深度
    的头像 发表于 07-10 14:19 652次阅读

    tensorflowpytorch哪个更简单?

    PyTorch更简单。选择TensorFlow还是PyTorch取决于您的具体需求和偏好。如果您需要一个易于使用、灵活且具有强大社区支持的框架,Py
    的头像 发表于 07-05 09:45 1230次阅读

    tensorflowpytorch哪个好

    tensorflowpytorch都是非常不错的强大的框架,TensorFlow还是PyTorch哪个更好取决于您的具体需求,以下是关于这两个框架的一些关键点:
    的头像 发表于 07-05 09:42 956次阅读

    tensorflow简单的模型训练

    在本文中,我们将详细介绍如何使用TensorFlow进行简单的模型训练。TensorFlow是一个开源的机器学习库,广泛用于各种机器学习任务,包括图像识别、自然语言处理等。我们将从安装
    的头像 发表于 07-05 09:38 1038次阅读

    keras模型转tensorflow session

    在这篇文章中,我们将讨论如何将Keras模型转换为TensorFlow session。 Keras和TensorFlow简介 Keras是一个高级神经网络API,它提供了一种简单、快速的方式来构建
    的头像 发表于 07-05 09:36 716次阅读

    如何使用PyTorch建立网络模型

    PyTorch是一个基于Python的开源机器学习库,因其易用性、灵活性和强大的动态图特性,在深度学习领域得到了广泛应用。本文将从PyTorch的基本概念、网络模型构建、优化方法、实际应用等多个方面,深入探讨使用PyTorch
    的头像 发表于 07-02 14:08 648次阅读

    TensorFlowPyTorch深度学习框架的比较与选择

    学习框架,它们各自拥有独特的特点和优势。本文将从背景介绍、核心特性、操作步骤、性能对比以及选择指南等方面对TensorFlowPyTorch进行详细比较,以帮助读者了解这两个框架的优缺点,并
    的头像 发表于 07-02 14:04 1343次阅读

    低功耗,1.8/2.5/3.3-V输入,3.3-V CMOS输出,2输入 异或门数据表

    电子发烧友网站提供《低功耗,1.8/2.5/3.3-V输入,3.3-V CMOS输出,2输入 异或门数据表.pdf》资料免费下载
    发表于 05-09 10:37 0次下载
    低功耗,<b class='flag-5'>1.8</b>/<b class='flag-5'>2.5</b>/3.3-V输入,3.3-V CMOS输出,2输入 异或门数据表